Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 202019 by MATHEMATICSAM last updated on 18/Dec/23

If α and β are the roots of the   ax^2  + 2bx + c = 0 and α + δ and β + δ are  the roots of Ax^2  + 2Bx + C = 0 for some   constant δ then prove that  ((b^2  − ac)/a^2 ) = ((B^2  − AC)/A^2 ) .

Ifαandβaretherootsoftheax2+2bx+c=0andα+δandβ+δaretherootsofAx2+2Bx+C=0forsomeconstantδthenprovethatb2aca2=B2ACA2.

Answered by esmaeil last updated on 18/Dec/23

α−β=((√(b^2 −ac))/(∣a∣))=(α+δ)−(β+δ)=  ((√(B^2 −AC))/(∣A∣))→((b^2 −ac)/a^2 )=((B^2 −AC)/A^2 )    α−β=((√δ^′ )/(∣a∣))

αβ=b2aca=(α+δ)(β+δ)=B2ACAb2aca2=B2ACA2αβ=δa

Commented by MM42 last updated on 18/Dec/23

 ⋛

Answered by Rasheed.Sindhi last updated on 19/Dec/23

Another way  •α & β are the roots of ax^2  + 2bx + c = 0     α+β=−((2b)/a) , αβ=(c/a)  •If the roots are α+δ & β+δ (δ is fixed constant)     The equation will be:     (α+δ)+(β+δ)=α+β+2δ=−((2b)/a)+2δ=−((2B)/A)  ⇒(B/A)=((−2b+2aδ)/(−2a))     (α+δ).(β+δ)=αβ+δ^2 +(α+β)δ=(c/a)−((2bδ)/a)+δ^2 =(C/A)  ⇒(C/A)=((c−2bδ+aδ^2 )/a)   ((B^2  − AC)/A^2 )=((B/A))^2 −(C/A)=(((−2b+2aδ)/(−2a)))^2 −((c−2bδ+aδ^2 )/a)      =((4b^2 +4a^2 δ^2 −8abδ)/(4a^2 ))−((c−2bδ+aδ^2 )/a)      =((4b^2 +4a^2 δ^2 −8abδ−4ac+8abδ−4a^2 δ^2 )/(4a^2 ))      =((4b^2 −4ac)/(4a^2 ))=((b^2 −ac)/a^2 )  QED

Anotherwayα&βaretherootsofax2+2bx+c=0α+β=2ba,αβ=caIftherootsareα+δ&β+δ(δisfixedconstant)Theequationwillbe:(α+δ)+(β+δ)=α+β+2δ=2ba+2δ=2BABA=2b+2aδ2a(α+δ).(β+δ)=αβ+δ2+(α+β)δ=ca2bδa+δ2=CACA=c2bδ+aδ2aB2ACA2=(BA)2CA=(2b+2aδ2a)2c2bδ+aδ2a=4b2+4a2δ28abδ4a2c2bδ+aδ2a=4b2+4a2δ28abδ4ac+8abδ4a2δ24a2=4b24ac4a2=b2aca2QED

Answered by Rasheed.Sindhi last updated on 19/Dec/23

((b^2  − ac)/a^2 ) = ((B^2  − AC)/A^2 ) .  ((b/a))^2 −(c/a)=((B/A))^2 −(C/A)  (1/4)(((−2b)/a))^2 −(c/a)=(1/4)(((−2B)/A))^2 −(C/A)  (1/4)(α+β)^2 −αβ=(1/4)( (α+δ)+(β+δ) )^2 −(α+δ)(β+δ)  (1/4)(α+β)^2 −αβ=(1/4)(α+β+2δ )^2 −(αβ+(α+β)δ+δ^2 )  (α+β)^2 −4αβ=(α+β+2δ)^2 −4(αβ+(α+β)δ+δ^2 )     =(α+β)^2 +4(α+β)δ+4δ^2 −4αβ−4(α+β)δ−4δ^2      =(α+β)^2 −4αβ  lhs=rhs  proved

b2aca2=B2ACA2.(ba)2ca=(BA)2CA14(2ba)2ca=14(2BA)2CA14(α+β)2αβ=14((α+δ)+(β+δ))2(α+δ)(β+δ)14(α+β)2αβ=14(α+β+2δ)2(αβ+(α+β)δ+δ2)(α+β)24αβ=(α+β+2δ)24(αβ+(α+β)δ+δ2)=(α+β)2+4(α+β)δ+4δ24αβ4(α+β)δ4δ2=(α+β)24αβlhs=rhsproved

Terms of Service

Privacy Policy

Contact: info@tinkutara.com