A board has 2, 4, and 6 written on it. One repeatedly chooses values (not necessarily different) for x, y, and z from the board, and writes xyz + xy + yz + zx + x + y + z if and only if those numbers are not already on the board and are also less than or equals 2013. The person repeats this process until no more numbers can be written. How many numbers will be written at the end of this process?
| |