Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 202114 by MATHEMATICSAM last updated on 21/Dec/23

If α and β are the roots of   ax^2  + bx + c = 0 and α + k and β + k  are   the roots of lx^2  + mx + n = 0 then prove  that k = (1/2)((b/a) − (m/l)).

Ifαandβaretherootsofax2+bx+c=0andα+kandβ+karetherootsoflx2+mx+n=0thenprovethatk=12(baml).

Answered by aleks041103 last updated on 21/Dec/23

ax^2 +bx+c=0⇔x=α,β  ⇒x^2 +(b/a)x+(c/a)=0⇔x=α,β  lx^2 +mx+n=0 ⇔ x=α+k,β+k  ⇒l(x+k)^2 +m(x+k)+n=0⇔x=α,β  ⇒l(x^2 +2xk+k^2 )+mx+mk+n=0  lx^2 +(2kl+m)x+(lk^2 +mk+n)=0  ⇒x^2 +(2k+(m/l))x+(k^2 +((mk+n)/l))=0  ⇒(b/a)=2k+(m/l)  ⇒k=(1/2)((b/a)−(m/4))

ax2+bx+c=0x=α,βx2+bax+ca=0x=α,βlx2+mx+n=0x=α+k,β+kl(x+k)2+m(x+k)+n=0x=α,βl(x2+2xk+k2)+mx+mk+n=0lx2+(2kl+m)x+(lk2+mk+n)=0x2+(2k+ml)x+(k2+mk+nl)=0ba=2k+mlk=12(bam4)

Answered by cortano12 last updated on 21/Dec/23

   { ((ax^2 +bx+c=0 ⇒α+β=−(b/a))),((lx^2 +mx+n=0⇒α+β+2k=−(m/l))) :}   ⇒−(b/a) + 2k =−(m/l)   ⇒2k = (b/a)−(m/l)   ⇒ k =(1/2) ((b/a) − (m/l) )

{ax2+bx+c=0α+β=balx2+mx+n=0α+β+2k=mlba+2k=ml2k=bamlk=12(baml)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com