Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 20230 by ajfour last updated on 24/Aug/17

Commented by ajfour last updated on 27/Aug/17

Find the area of that part of the  surface of the sphere :  x^2 +y^2 +z^2 =a^2  which is cut out by  the surface of the cylinder :  (x^2 /a^2 )+(y^2 /b^2 )=1  (a>b).

$${Find}\:{the}\:{area}\:{of}\:{that}\:{part}\:{of}\:{the} \\ $$$${surface}\:{of}\:{the}\:{sphere}\:: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={a}^{\mathrm{2}} \:{which}\:{is}\:{cut}\:{out}\:{by} \\ $$$${the}\:{surface}\:{of}\:{the}\:{cylinder}\:: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\left({a}>{b}\right). \\ $$

Commented by ajfour last updated on 26/Aug/17

I couldn′t solve this, method is  clear to me, but the integral i  cannot simplify. mrW1 Sir,  please help after i attach a   diagram  for its solution.

$${I}\:{couldn}'{t}\:{solve}\:{this},\:{method}\:{is} \\ $$$${clear}\:{to}\:{me},\:{but}\:{the}\:{integral}\:{i} \\ $$$${cannot}\:{simplify}.\:{mrW}\mathrm{1}\:{Sir}, \\ $$$${please}\:{help}\:{after}\:{i}\:{attach}\:{a}\: \\ $$$${diagram}\:\:{for}\:{its}\:{solution}. \\ $$

Commented by ajfour last updated on 26/Aug/17

Commented by ajfour last updated on 26/Aug/17

Let Area of sphere outside  cylinder be A.  A=2∫_(−θ_0 ) ^(  θ_0 ) r(2φ)adθ  where acos θ_0 =b     r^2 =x^2 +y^2  such that   (x^2 /a^2 )+(y^2 /b^2 )=1   and also r=acos θ  and    tan φ=(x/y) .  Please help evaluating the integral..

$${Let}\:{Area}\:{of}\:{sphere}\:{outside} \\ $$$${cylinder}\:{be}\:{A}. \\ $$$${A}=\mathrm{2}\int_{−\theta_{\mathrm{0}} } ^{\:\:\theta_{\mathrm{0}} } {r}\left(\mathrm{2}\phi\right){ad}\theta \\ $$$${where}\:{a}\mathrm{cos}\:\theta_{\mathrm{0}} ={b} \\ $$$$\:\:\:{r}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:{such}\:{that}\: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\:{and}\:{also}\:{r}={a}\mathrm{cos}\:\theta \\ $$$${and}\:\:\:\:\mathrm{tan}\:\phi=\frac{{x}}{{y}}\:. \\ $$$${Please}\:{help}\:{evaluating}\:{the}\:{integral}.. \\ $$

Commented by ajfour last updated on 26/Aug/17

x=ytan φ  x^2 +y^2 =y^2 (1+tan^2 φ)=r^2      ...(i(  ((y^2 tan^2 φ)/a^2 )+(y^2 /b^2 )=1  y^2 (((tan^2 φ)/a^2 )+(1/b^2 ))=1      ....(ii)  dividing (i) by (ii):  ((1+tan^2 φ)/(((tan^2 φ)/a^2 )+(1/b^2 )))=r^2  ⇒ tan^2 φ=((((r^2 /b^2 )−1))/((1−(r^2 /a^2 ))))  1+tan^2 φ=((r^2 ((1/b^2 )−(1/a^2 )))/((1−(r^2 /a^2 ))))  as r=acos θ  sec^2 φ=((cos^2 θ(a^2 −b^2 ))/(b^2 sin^2 θ))  ⇒  cos φ=((btan θ)/(√(a^2 −b^2 )))   ⇒  φ=cos^(−1) (((btan θ)/(√(a^2 −b^2 ))))  A=8a∫_0 ^(  θ_0 ) r𝛗d𝛉 =8a(I)    I=∫_0 ^(  θ_0 ) acos θcos^(−1) (((btan θ)/(√(a^2 −b^2 ))))dθ   =asin θcos^(−1) (((btan θ)/(√(a^2 −b^2 ))))∣_0 ^θ_0                −((−b)/(√(a^2 −b^2 )))∫_0 ^( θ_0 ) (((asin θsec^2 θ)dθ)/(√(1−((b^2 tan^2 θ)/((a^2 −b^2 ))))))   and as acos θ_0 =b      tan θ_0 =((√(a^2 −b^2 ))/b) , so  I=0+ab∫_0 ^( θ_0 ) ((sec θtan θdθ)/(√(a^2 −b^2 −b^2 tan^2 θ)))    =a∫_0 ^( θ_0 ) ((d(bsec θ))/(√(a^2 −b^2 sec^2 θ)))    =asin^(−1) (((bsec θ)/a))∣_0 ^θ_0      =a[sin^(−1) ((b/(acos θ_0 )))−sin^(−1) ((b/a))]  but acos θ_0 =b, so  I=a[(π/2)−sin^(−1) (b/a)]  and      A=8a^2 [(π/2)−sin^(−1) (b/a)]        A=4𝛑a^2 −8a^2 sin^(−1) ((b/a)).  (still answer dont match)   Help !

$${x}={y}\mathrm{tan}\:\phi \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={y}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \phi\right)={r}^{\mathrm{2}} \:\:\:\:\:...\left({i}\left(\right.\right. \\ $$$$\frac{{y}^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \phi}{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${y}^{\mathrm{2}} \left(\frac{\mathrm{tan}\:^{\mathrm{2}} \phi}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\right)=\mathrm{1}\:\:\:\:\:\:....\left({ii}\right) \\ $$$${dividing}\:\left({i}\right)\:{by}\:\left({ii}\right): \\ $$$$\frac{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \phi}{\frac{\mathrm{tan}\:^{\mathrm{2}} \phi}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }}={r}^{\mathrm{2}} \:\Rightarrow\:\mathrm{tan}\:^{\mathrm{2}} \phi=\frac{\left(\frac{{r}^{\mathrm{2}} }{{b}^{\mathrm{2}} }−\mathrm{1}\right)}{\left(\mathrm{1}−\frac{{r}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)} \\ $$$$\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \phi=\frac{{r}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{b}^{\mathrm{2}} }−\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\right)}{\left(\mathrm{1}−\frac{{r}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)} \\ $$$${as}\:{r}={a}\mathrm{cos}\:\theta \\ $$$$\mathrm{sec}\:^{\mathrm{2}} \phi=\frac{\mathrm{cos}\:^{\mathrm{2}} \theta\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}{{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$$$\Rightarrow\:\:\mathrm{cos}\:\phi=\frac{{b}\mathrm{tan}\:\theta}{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\: \\ $$$$\Rightarrow\:\:\phi=\mathrm{cos}^{−\mathrm{1}} \left(\frac{{b}\mathrm{tan}\:\theta}{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right) \\ $$$$\boldsymbol{{A}}=\mathrm{8}{a}\int_{\mathrm{0}} ^{\:\:\theta_{\mathrm{0}} } \boldsymbol{{r}\phi{d}\theta}\:=\mathrm{8}{a}\left({I}\right) \\ $$$$\:\:{I}=\int_{\mathrm{0}} ^{\:\:\theta_{\mathrm{0}} } {a}\mathrm{cos}\:\theta\mathrm{cos}^{−\mathrm{1}} \left(\frac{{b}\mathrm{tan}\:\theta}{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right){d}\theta \\ $$$$\:={a}\mathrm{sin}\:\theta\mathrm{cos}^{−\mathrm{1}} \left(\frac{{b}\mathrm{tan}\:\theta}{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right)\mid_{\mathrm{0}} ^{\theta_{\mathrm{0}} } \:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:−\frac{−{b}}{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\int_{\mathrm{0}} ^{\:\theta_{\mathrm{0}} } \frac{\left({a}\mathrm{sin}\:\theta\mathrm{sec}\:^{\mathrm{2}} \theta\right){d}\theta}{\sqrt{\mathrm{1}−\frac{{b}^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \theta}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}}} \\ $$$$\:{and}\:{as}\:{a}\mathrm{cos}\:\theta_{\mathrm{0}} ={b} \\ $$$$\:\:\:\:\mathrm{tan}\:\theta_{\mathrm{0}} =\frac{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}{{b}}\:,\:{so} \\ $$$${I}=\mathrm{0}+{ab}\int_{\mathrm{0}} ^{\:\theta_{\mathrm{0}} } \frac{\mathrm{sec}\:\theta\mathrm{tan}\:\theta{d}\theta}{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −{b}^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \theta}} \\ $$$$\:\:={a}\int_{\mathrm{0}} ^{\:\theta_{\mathrm{0}} } \frac{{d}\left({b}\mathrm{sec}\:\theta\right)}{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \mathrm{sec}\:^{\mathrm{2}} \theta}} \\ $$$$\:\:={a}\mathrm{sin}^{−\mathrm{1}} \left(\frac{{b}\mathrm{sec}\:\theta}{{a}}\right)\mid_{\mathrm{0}} ^{\theta_{\mathrm{0}} } \\ $$$$\:\:={a}\left[\mathrm{sin}^{−\mathrm{1}} \left(\frac{{b}}{{a}\mathrm{cos}\:\theta_{\mathrm{0}} }\right)−\mathrm{sin}^{−\mathrm{1}} \left(\frac{{b}}{{a}}\right)\right] \\ $$$${but}\:{a}\mathrm{cos}\:\theta_{\mathrm{0}} ={b},\:{so} \\ $$$${I}={a}\left[\frac{\pi}{\mathrm{2}}−\mathrm{sin}^{−\mathrm{1}} \frac{{b}}{{a}}\right] \\ $$$${and} \\ $$$$\:\:\:\:{A}=\mathrm{8}{a}^{\mathrm{2}} \left[\frac{\pi}{\mathrm{2}}−\mathrm{sin}^{−\mathrm{1}} \frac{{b}}{{a}}\right] \\ $$$$\:\:\:\:\:\:\boldsymbol{{A}}=\mathrm{4}\boldsymbol{\pi{a}}^{\mathrm{2}} −\mathrm{8}\boldsymbol{{a}}^{\mathrm{2}} \mathrm{sin}^{−\mathrm{1}} \left(\frac{\boldsymbol{{b}}}{\boldsymbol{{a}}}\right). \\ $$$$\left({still}\:{answer}\:{dont}\:{match}\right) \\ $$$$\:\boldsymbol{{Help}}\:! \\ $$

Answered by ajfour last updated on 25/Aug/17

Area=4πa^2 −8a^2 sin^(−1) (((√(a^2 −b^2 ))/a)) .

$${Area}=\mathrm{4}\pi{a}^{\mathrm{2}} −\mathrm{8}{a}^{\mathrm{2}} \mathrm{sin}^{−\mathrm{1}} \left(\frac{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}{{a}}\right)\:. \\ $$

Commented by ajfour last updated on 26/Aug/17

This is tbe answer in book.  if b→a then Area should tend  to zero. This is fulfilled by my  answer.  if b→0 Area should tend to 4πr^2 ,  again this is fulfilled by my  answer ..

$${This}\:{is}\:{tbe}\:{answer}\:{in}\:{book}. \\ $$$${if}\:{b}\rightarrow{a}\:{then}\:{Area}\:{should}\:{tend} \\ $$$${to}\:{zero}.\:{This}\:{is}\:{fulfilled}\:{by}\:{my} \\ $$$${answer}. \\ $$$${if}\:{b}\rightarrow\mathrm{0}\:{Area}\:{should}\:{tend}\:{to}\:\mathrm{4}\pi{r}^{\mathrm{2}} , \\ $$$${again}\:{this}\:{is}\:{fulfilled}\:{by}\:{my} \\ $$$${answer}\:.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com