Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 202303 by hardmath last updated on 24/Dec/23

If   a_1  = 1   and   a_1  ∙ a_2  ∙ ... ∙ a_n  = n^2   Find:   a_2  + a_(13)  = ?

Ifa1=1anda1a2...an=n2Find:a2+a13=?

Answered by MATHEMATICSAM last updated on 24/Dec/23

a_1  ∙ a_2  ∙ .... ∙ a_n  = n^2   ∴ a_1  × a_2  × a_3  × .... × a_(13)  =  13^2  = 169  ⇒ a_(13)  = ((169)/(a_1  × a_2  × a_3  × ..... × a_(12) )) = ((169)/(144))  a_1  × a_2  = 2^2  = 4  ⇒ a_2  = 4 [∵ a_1  = 1]  a_2  + a_(13)  = 4 + ((169)/(144)) = ((745)/(144))

a1a2....an=n2a1×a2×a3×....×a13=132=169a13=169a1×a2×a3×.....×a12=169144a1×a2=22=4a2=4[a1=1]a2+a13=4+169144=745144

Commented by hardmath last updated on 24/Dec/23

thankyou dear ser

thankyoudearser

Answered by mr W last updated on 24/Dec/23

a_1 a_2 ...a_(n−1) a_n =n^2   a_1 a_2 ...a_(n−1) =(n−1)^2   ⇒a_n =((n/(n−1)))^2   a_2 +a_(13) =((2/1))^2 +(((13)/(12)))^2 =((745)/(144))

a1a2...an1an=n2a1a2...an1=(n1)2an=(nn1)2a2+a13=(21)2+(1312)2=745144

Commented by hardmath last updated on 24/Dec/23

thankyou dear professor cool

thankyoudearprofessorcool

Answered by 1990mbodji last updated on 24/Dec/23

    On suppose que a_1 = 1  et  a_1 .a_2 ...a_n  = n^2 .  Trouvons la valeur de a_2  + a_(13) .    a_1 a_2  = 4 ⇒ a_2  = 4   a_1 a_2 a_3  = 9 ⇒ a_3  = (9/4)    Par ite^� ration  : a_(13)  = ((169)/(144))    Donc a_2  + a_(13)  = 4+((169)/(144))  ⇒ a_2  + a_(13)  = ((745)/(144))

Onsupposequea1=1eta1.a2...an=n2.Trouvonslavaleurdea2+a13.a1a2=4a2=4a1a2a3=9a3=94Pariteration´:a13=169144Donca2+a13=4+169144a2+a13=745144

Commented by hardmath last updated on 24/Dec/23

thankyou dear ser

thankyoudearser

Terms of Service

Privacy Policy

Contact: info@tinkutara.com