All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 20239 by tammi last updated on 24/Aug/17
∫(2x+3)dxx2+4x−7
Answered by $@ty@m last updated on 25/Aug/17
=∫2x+4−1x2+4x−7dx=∫2x+4x2+4x−7dx−∫dx(x+2)2−(11)2=∫dtt−ln∣(x+2)+(x+2)2−(11)2∣,wheret=x2+4x−7=2t−ln∣x+2+x2+4x−7∣+C=2x2+4x−7−ln∣x+2+x2+4x−7∣+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com