Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 202477 by MATHEMATICSAM last updated on 27/Dec/23

If x = (((√(a^2  + b^2 )) + (√(a^2  − b^2 )))/( (√(a^2  + b^2 )) − (√(a^2  − b^2 )))) then show that  b^2 x^2  − 2a^2 x + b^2  = 0.

Ifx=a2+b2+a2b2a2+b2a2b2thenshowthatb2x22a2x+b2=0.

Answered by Nimnim111118 last updated on 27/Dec/23

We have (x/1) = (((√(a^2  + b^2 )) + (√(a^2  − b^2 )))/( (√(a^2  + b^2 )) − (√(a^2  − b^2 ))))  ⇒((x+1)/(x−1))=((2(√(a^2 +b^2 )))/(2(√(a^2 −b^2 )))) (componendo & dividendo)  ⇒(((x+1)/(x−1)))^2 =((a^2 +b^2 )/(a^2 −b^2 )) (by squaring both sides)  ⇒((x^2 +2x+1)/(x^2 −2x+1))=((a^2 +b^2 )/(a^2 −b^2 ))  ⇒((2x^2 +2)/(4x))=((2a^2 )/(2b^2 )) (componendo & dividendo)  ⇒((x^2 +1)/(2x))=(a^2 /b^2 )   ⇒b^2 x^2 +b^2 =2a^2 x  ⇒b^2 x^2 −2a^2 x+b^2 =0

Wehavex1=a2+b2+a2b2a2+b2a2b2x+1x1=2a2+b22a2b2(componendo&dividendo)(x+1x1)2=a2+b2a2b2(bysquaringbothsides)x2+2x+1x22x+1=a2+b2a2b22x2+24x=2a22b2(componendo&dividendo)x2+12x=a2b2b2x2+b2=2a2xb2x22a2x+b2=0

Answered by deleteduser1 last updated on 27/Dec/23

x=((((√(a^2 +b^2 ))+(√(a^2 −b^2 )))^2 =2(a^2 +(√(a^4 −b^4 ))))/(((√(a^2 +b^2 )))^2 −((√(a^2 −b^2 )))^2 =2b^2 ))  ⇒(b^2 x−a^2 )^2 =a^4 −b^4 ⇒b^4 x^2 −2a^2 b^2 x+a^4 =a^4 −b^4   ⇒b^2 x^2 −2a^2 x+b^2 =0

x=(a2+b2+a2b2)2=2(a2+a4b4)(a2+b2)2(a2b2)2=2b2(b2xa2)2=a4b4b4x22a2b2x+a4=a4b4b2x22a2x+b2=0

Answered by Rasheed.Sindhi last updated on 28/Dec/23

If x = (((√(a^2  + b^2 )) + (√(a^2  − b^2 )))/( (√(a^2  + b^2 )) − (√(a^2  − b^2 )))) then show that  b^2 x^2  − 2a^2 x + b^2  = 0     b^2 x^2  − 2a^2 x + b^2  = 0  ⇒b^2 (x+(1/x))−2a^2 =0 (We need x+(1/x))  Let A=(√(a^2  + b^2 )) + (√(a^2  − b^2 ))  & A^(−) =(√(a^2  + b^2 )) − (√(a^2  − b^2 ))   x=(A/A^− ) , x+(1/x)=(A/A^− )+(A^− /A)=((A^2 +(A^(−) )^2 )/(AA^(−) ))     =(((A+A^(−) )^2 −2AA^(−) )/(AA^(−) ))   { ((A+A^(−) =2(√(a^2 +b^2 )) )),((AA^(−) =((√(a^2 +b^2 )) )^2 −((√(a^2 −b^2 )) )^2 =2b^2 )) :}   x+(1/x)=(((2(√(a^2 +b^2 )))^2 −2(2b^2 ))/(2b^2 ))=((2a^2 )/b^2 )   b^2 x^2  − 2a^2 x + b^2  = 0  ⇒b^2 (x+(1/x))−2a^2 =0  ⇒b^2 (((2a^2 )/b^2 ))−2a^2 =0  ⇒0=0 (proved)

Ifx=a2+b2+a2b2a2+b2a2b2thenshowthatb2x22a2x+b2=0b2x22a2x+b2=0b2(x+1x)2a2=0(Weneedx+1x)LetA=a2+b2+a2b2&A=a2+b2a2b2x=AA,x+1x=AA+AA=A2+(A)2AA=(A+A)22AAAA{A+A=2a2+b2AA=(a2+b2)2(a2b2)2=2b2x+1x=(2a2+b2)22(2b2)2b2=2a2b2b2x22a2x+b2=0b2(x+1x)2a2=0b2(2a2b2)2a2=00=0(proved)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com