Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 202490 by Calculusboy last updated on 27/Dec/23

Commented by aleks041103 last updated on 27/Dec/23

is {x} the whole part or the fractional part?

is{x}thewholepartorthefractionalpart?

Commented by Calculusboy last updated on 28/Dec/23

the fractional part

thefractionalpart

Answered by namphamduc last updated on 28/Dec/23

If you took this from FB, you knew I solved it, the result is γ (Euler Mascheroni constant).

IfyoutookthisfromFB,youknewIsolvedit,theresultisγ(EulerMascheroniconstant).

Answered by witcher3 last updated on 28/Dec/23

let(1/x)=t  =∫_1 ^∞ {t}.((1/(t−1))).(dt/t^2 )=S  =∫_1 ^∞ (({t})/(t^2 (t−1)))dt  =∫_1 ^∞ ((t−[t])/(t^2 (t−1)))dt  =Σ_(k≥1) ∫_k ^(k+1) ((t−k)/(t^2 (t−1)))dt=Σ_(k≥1) ∫_k ^(k+1) ((1−k)/(t−1))+(k/t^2 )+((k−1)/t)dt  =Σ_(k≥1) [(1−k)(ln(k)−ln(k−1)−(k/(k+1))+1)+(k−1)ln(k+1)−(k−1)ln(k)  =Σ_(k≥1) ^N [2(1−k)ln(k)−(1−k)ln(k^2 −1)+(1/(k+1))  =Σ_(k=1) ^N {(1−k)ln(k)+kln(k+1)+(k−1)ln(k−1)−kln((k)  +ln(k)−ln(1+k)+(1/(k+1))}  =Nln(N+1)−ln(2)−Nln(N)+ln(1)−ln(N+1)+ln(2)+H_(N+1) −1  S_N =Nln(1+(1/N))+H_(N+1) −ln(N+1)−1  S=lim_(N→∞) S_N =lim_(N→∞) (Nln(1+(1/N))−1)+lim_(N→∞) (H_(N+1) −ln(N+1)}  =γ

let1x=t=1{t}.(1t1).dtt2=S=1{t}t2(t1)dt=1t[t]t2(t1)dt=k1kk+1tkt2(t1)dt=k1kk+11kt1+kt2+k1tdt=k1[(1k)(ln(k)ln(k1)kk+1+1)+(k1)ln(k+1)(k1)ln(k)=Nk1[2(1k)ln(k)(1k)ln(k21)+1k+1=Nk=1{(1k)ln(k)+kln(k+1)+(k1)ln(k1)kln((k)+ln(k)ln(1+k)+1k+1}=Nln(N+1)ln(2)Nln(N)+ln(1)ln(N+1)+ln(2)+HN+11SN=Nln(1+1N)+HN+1ln(N+1)1Double subscripts: use braces to clarify=γ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com