Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 202731 by MrGHK last updated on 02/Jan/24

∫_0 ^1 ((ln(x)ln(1−x))/( x(√(1−x))))dx

01ln(x)ln(1x)x1xdx

Answered by witcher3 last updated on 02/Jan/24

∫_0 ^1 t^(a−1) (1−t)^(b−1) dt=β(a,b)  ∂_a .∂_b β(a,b)=∫_0 ^1 ln(t)t^(a−1) ln(1−t)t^(b−1) dt=f(a,b)  lim_(x→0) f(x,(1/2))=∫_0 ^1 ((ln(x))/x).((ln(1−x))/( (√(1−x))))dx  ∂_b β(a,b)=β(a,b)(Ψ(b)−Ψ(a+b))  ∂_a ∂_b β(a,b)=β(a,b)(Ψ(a)−Ψ(a+b))(Ψ(b)−Ψ(a+b))  −Ψ′(a+b)β(a,b)  I=lim_(x→0) β(x,(1/2))(Ψ(x)−Ψ(x+(1/2)))(Ψ((1/2))−Ψ(x+(1/2)))−Ψ′(x+(1/2)))  =(Ψ(x)(Ψ((1/2))−Ψ(x+(1/2)))−Ψ(x+(1/2))(Ψ((1/2))−Ψ(x+(1/2))−Ψ′(x+(1/2)))β(x,(1/2))=  Ψ(x)=Ψ(1+x)−(1/x)  Ψ((1/2))−Ψ(x+(1/2))=Ψ((1/2))−Ψ((1/2))−xΨ′((1/2))−(x^2 /2)Ψ′′((1/2))+o(x^2 )  =x(−Ψ′((1/2))−(x/2)Ψ′′((1/2))+o(x))  x.(Ψ(1+x)−(1/x)−Ψ(x+(1/2)))(−Ψ′((1/2))−(x/2)Ψ′′((1/2))+o(x))=A  =xΨ(1+x)−1−xΨ(x+(1/2))=−1−x(Ψ((1/2))−Ψ(1))+o(x)  A=Ψ′((1/2))+x(−((Ψ′′((1/2)))/2)+(Ψ((1/2))−Ψ(1))Ψ′((1/2)))+o(x)  Ψ′((1/2)+x)=Ψ′((1/2))+Ψ′′((1/2))x+o(x)  =(Ψ(x)−Ψ(x+(1/2)))(Ψ((1/2))−Ψ((1/2)+x))−Ψ′(x+(1/2))  =x(−((Ψ′′((1/2)))/2)+(Ψ((1/2))−Ψ(1))Ψ′((1/2)))+o(x)  β(x,(1/2))∼Γ(x)=((Γ(1+x))/x)  I=lim_(x→0) β(x,(1/2)).x(−((Ψ′′((1/2)))/2)+(Ψ((1/2))−Ψ(1))Ψ′((1/2)))  β(x,(1/2))∼Γ(x)=((Γ(1+x))/x)  ⇔lim_(x→0)  (((−((Ψ′′((1/2)))/2)+(Ψ((1/2))−Ψ(1))Ψ′((1/2))xΓ(1+x))/x)  =(−((Ψ′′((1/2)))/2)+(Ψ((1/2))−Ψ(1))Ψ′((1/2)))=∫_0 ^1 ((ln(x)ln(1−x))/(x(√(1−x))))dx  Ψ(1)=−γ,Ψ((1/2))=−γ−log(4);Ψ′((1/2))=(π^2 /2);  Ψ′′((1/2))=−14ζ(3)  ∫_0 ^1 ((ln(x)ln(1−x))/(x(√(1−x))))dx=(7ζ(3)−π^2 ln(2))∼1.57

01ta1(1t)b1dt=β(a,b)a.bβ(a,b)=01ln(t)ta1ln(1t)tb1dt=f(a,b)limfx0(x,12)=01ln(x)x.ln(1x)1xdxbβ(a,b)=β(a,b)(Ψ(b)Ψ(a+b))abβ(a,b)=β(a,b)(Ψ(a)Ψ(a+b))(Ψ(b)Ψ(a+b))Ψ(a+b)β(a,b)I=limx0β(x,12)(Ψ(x)Ψ(x+12))(Ψ(12)Ψ(x+12))Ψ(x+12))=(Ψ(x)(Ψ(12)Ψ(x+12))Ψ(x+12)(Ψ(12)Ψ(x+12)Ψ(x+12))β(x,12)=Ψ(x)=Ψ(1+x)1xΨ(12)Ψ(x+12)=Ψ(12)Ψ(12)xΨ(12)x22Ψ(12)+o(x2)=x(Ψ(12)x2Ψ(12)+o(x))x.(Ψ(1+x)1xΨ(x+12))(Ψ(12)x2Ψ(12)+o(x))=A=xΨ(1+x)1xΨ(x+12)=1x(Ψ(12)Ψ(1))+o(x)A=Ψ(12)+x(Ψ(12)2+(Ψ(12)Ψ(1))Ψ(12))+o(x)Ψ(12+x)=Ψ(12)+Ψ(12)x+o(x)=(Ψ(x)Ψ(x+12))(Ψ(12)Ψ(12+x))Ψ(x+12)=x(Ψ(12)2+(Ψ(12)Ψ(1))Ψ(12))+o(x)β(x,12)Γ(x)=Γ(1+x)xI=limx0β(x,12).x(Ψ(12)2+(Ψ(12)Ψ(1))Ψ(12))β(x,12)Γ(x)=Γ(1+x)xlimx0(Ψ(12)2+(Ψ(12)Ψ(1))Ψ(12)xΓ(1+x)x=(Ψ(12)2+(Ψ(12)Ψ(1))Ψ(12))=01ln(x)ln(1x)x1xdxΨ(1)=γ,Ψ(12)=γlog(4);Ψ(12)=π22;Ψ(12)=14ζ(3)01ln(x)ln(1x)x1xdx=(7ζ(3)π2ln(2))1.57

Commented by MrGHK last updated on 03/Jan/24

nice solution sir

nicesolutionsir

Commented by witcher3 last updated on 08/Jan/24

thanx have a nice day

thanxhaveaniceday

Terms of Service

Privacy Policy

Contact: info@tinkutara.com