Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 202816 by ajfour last updated on 03/Jan/24

Commented by ajfour last updated on 03/Jan/24

With what constant force should  trolley be pushed towards left such  that inclination of plank dont change  and system moves at uniform speed?

Withwhatconstantforceshouldtrolleybepushedtowardsleftsuchthatinclinationofplankdontchangeandsystemmovesatuniformspeed?

Commented by mr W last updated on 04/Jan/24

is the trolley fixed with the plank  and therefore the inclination of the   plank given, e.g. with inclanation  angle θ?

isthetrolleyfixedwiththeplankandthereforetheinclinationoftheplankgiven,e.g.withinclanationangleθ?

Commented by mr W last updated on 04/Jan/24

Commented by mr W last updated on 04/Jan/24

or the trolley is not fixed with the  plank, but their contact is frictionless?

orthetrolleyisnotfixedwiththeplank,buttheircontactisfrictionless?

Commented by mr W last updated on 04/Jan/24

i have solved both cases.

ihavesolvedbothcases.

Answered by a.lgnaoui last updated on 03/Jan/24

F_x −F_f =constante  M(dv/dt)−𝛍mvx=0  v_x =vcos 𝛂=v(√(1−(b^2 /L^2 )))  ⇒ M(dv/dt)=mv((√(L^2 −b^2 ))/L)      donc      F=((mv(√(L^2 −b^2 )))/L)   { ((m ;  mssse de[la tige ( L: longeur))),((v=vitesse[ de[deplacement )) :}

FxFf=constanteMdvdtμmvx=0vx=vcosα=v1b2L2Mdvdt=mvL2b2LdoncF=mvL2b2L{m;msssede[latige(L:longeur)v=vitesse[de[deplacement

Answered by mr W last updated on 04/Jan/24

CASE 1:  trolley and plank are connected with  a hinge and the inclanation of the  plank is known (θ).

CASE1:trolleyandplankareconnectedwithahingeandtheinclanationoftheplankisknown(θ).

Commented by mr W last updated on 04/Jan/24

Commented by mr W last updated on 04/Jan/24

tan φ=μ  ((CD)/(sin ((π/2)−φ−θ)))=((AC)/(sin φ))  ⇒CD=((L cos (φ+θ))/(2 sin φ))        =(L/2)(((cos θ)/(tan φ))−sin θ)=(L/2)(((cos θ)/μ)−sin θ)  ((CD)/(sin ((π/2)−ϕ+θ)))=((CB)/(sin ϕ))  CD=((((b/(sin θ))−(L/2))cos (ϕ−θ))/(sin ϕ))         =((b/(sin θ))−(L/2))(((cos θ)/(tan ϕ))+sin θ)  (L/2)(((cos θ)/μ)−sin θ)=((b/(sin θ))−(L/2))(((cos θ)/(tan ϕ))+sin θ)  (1/μ)−tan θ=(((2b)/(L sin θ))−1)((1/(tan ϕ))+tan θ)  ⇒(1/(tan ϕ))=(((1/μ)−tan θ)/(((2b)/(L sin θ))−1))−tan θ  (R/(sin ϕ))=((mg)/(sin (φ+ϕ)))  R=((mg sin ϕ)/(sin (φ+ϕ)))=((mg)/(((sin φ)/(tan ϕ))+cos φ))  F=R sin φ=((mg)/((1/(tan ϕ))+(1/(tan φ))))     =((mg)/((((1/μ)−tan θ)/(((2b)/(L sin θ))−1))−tan θ+(1/μ)))  ⇒(F/(mg))=(1/(((1/μ)−tan θ)((1/(((2b)/(L sin θ))−1))+1)))

tanϕ=μCDsin(π2ϕθ)=ACsinϕCD=Lcos(ϕ+θ)2sinϕ=L2(cosθtanϕsinθ)=L2(cosθμsinθ)CDsin(π2φ+θ)=CBsinφCD=(bsinθL2)cos(φθ)sinφ=(bsinθL2)(cosθtanφ+sinθ)L2(cosθμsinθ)=(bsinθL2)(cosθtanφ+sinθ)1μtanθ=(2bLsinθ1)(1tanφ+tanθ)1tanφ=1μtanθ2bLsinθ1tanθRsinφ=mgsin(ϕ+φ)R=mgsinφsin(ϕ+φ)=mgsinϕtanφ+cosϕF=Rsinϕ=mg1tanφ+1tanϕ=mg1μtanθ2bLsinθ1tanθ+1μFmg=1(1μtanθ)(12bLsinθ1+1)

Answered by mr W last updated on 04/Jan/24

CASE 2:  trolley and plank are not fixed  connected, but their contact is  frictionless.

CASE2:trolleyandplankarenotfixedconnected,buttheircontactisfrictionless.

Commented by mr W last updated on 04/Jan/24

Commented by mr W last updated on 04/Jan/24

tan φ=μ  tan φ_1 =μ_1 =0   ⇒φ_1 =0 ⇒ϕ=θ  θ≥sin^(−1) (b/L)  ((CD)/(sin ((π/2)−φ−θ)))=((AC)/(sin φ))  ⇒CD=((L cos (φ+θ))/(2 sin φ))        =(L/2)(((cos θ)/(tan φ))−sin θ)=(L/2)(((cos θ)/μ)−sin θ)  ((CD)/(sin ((π/2)−ϕ+θ)))=((CB)/(sin ϕ))  CD=((((b/(sin θ))−(L/2))cos (ϕ−θ))/(sin ϕ))         =((b/(sin θ))−(L/2))(((cos θ)/(tan ϕ))+sin θ)  (L/2)(((cos θ)/μ)−sin θ)=((b/(sin θ))−(L/2))(((cos θ)/(tan ϕ))+sin θ)  (1/μ)−tan θ=(((2b)/(L sin θ))−1)((1/(tan ϕ))+tan θ)  (1/μ)−tan θ=(((2b)/(L sin θ))−1)((1/(tan θ))+tan θ)  ⇒((2b)/(L sin θ))((1/(tan θ))+tan θ)−(1/(tan θ))=(1/μ)  ⇒sin θ cos θ (((sin θ)/μ)+cos θ)=((2b)/L)  ⇒θ=....    (R/(sin ϕ))=((mg)/(sin (φ+ϕ)))  R=((mg sin ϕ)/(sin (φ+ϕ)))=((mg)/(((sin φ)/(tan ϕ))+cos φ))  F=R sin φ=((mg)/((1/(tan ϕ))+(1/(tan φ))))=((mg)/((1/(tan θ))+(1/μ)))  ⇒(F/(mg))=(1/((1/(tan θ))+(1/μ)))    example:  L=5, b=2, μ=0.5  ⇒θ≈0.5182 (29.69°) ⇒(F/(mg))≈0.2664  ⇒θ≈1.1710 (67.09°) ⇒(F/(mg))≈0.4128

tanϕ=μtanϕ1=μ1=0ϕ1=0φ=θθsin1bLCDsin(π2ϕθ)=ACsinϕCD=Lcos(ϕ+θ)2sinϕ=L2(cosθtanϕsinθ)=L2(cosθμsinθ)CDsin(π2φ+θ)=CBsinφCD=(bsinθL2)cos(φθ)sinφ=(bsinθL2)(cosθtanφ+sinθ)L2(cosθμsinθ)=(bsinθL2)(cosθtanφ+sinθ)1μtanθ=(2bLsinθ1)(1tanφ+tanθ)1μtanθ=(2bLsinθ1)(1tanθ+tanθ)2bLsinθ(1tanθ+tanθ)1tanθ=1μsinθcosθ(sinθμ+cosθ)=2bLθ=....Rsinφ=mgsin(ϕ+φ)R=mgsinφsin(ϕ+φ)=mgsinϕtanφ+cosϕF=Rsinϕ=mg1tanφ+1tanϕ=mg1tanθ+1μFmg=11tanθ+1μexample:L=5,b=2,μ=0.5θ0.5182(29.69°)Fmg0.2664θ1.1710(67.09°)Fmg0.4128

Answered by mr W last updated on 04/Jan/24

CASE 3:  as case 2, but with friction   coefficient μ_1 ≠0 between the plank   and trolley.     tan φ=μ  tan φ_1 =μ_1   ϕ=θ+φ_1   θ≥sin^(−1) (b/L)  ((CD)/(sin ((π/2)−φ−θ)))=((AC)/(sin φ))  ⇒CD=((L cos (φ+θ))/(2 sin φ))        =(L/2)(((cos θ)/(tan φ))−sin θ)=(L/2)(((cos θ)/μ)−sin θ)  ((CD)/(sin ((π/2)−ϕ+θ)))=((CB)/(sin ϕ))  CD=((((b/(sin θ))−(L/2))cos (ϕ−θ))/(sin ϕ))         =((b/(sin θ))−(L/2))(((cos θ)/(tan ϕ))+sin θ)  (L/2)(((cos θ)/μ)−sin θ)=((b/(sin θ))−(L/2))(((cos θ)/(tan ϕ))+sin θ)  (1/μ)−tan θ=(((2b)/(L sin θ))−1)((1/(tan ϕ))+tan θ)  (1/μ)−tan θ=(((2b)/(L sin θ))−1)(((1−μ_1  tan θ)/(tan θ+μ_1 ))+tan θ)  ⇒(((2b)/(L sin θ))−1)(((1−μ_1  tan θ)/(tan θ+μ_1 ))+tan θ)+tan θ=(1/μ)  ⇒θ=....    (R/(sin ϕ))=((mg)/(sin (φ+ϕ)))  R=((mg sin ϕ)/(sin (φ+ϕ)))=((mg)/(((sin φ)/(tan ϕ))+cos φ))  F=R sin φ=((mg)/((1/(tan ϕ))+(1/(tan φ))))=((mg)/(((1−μ_1  tan θ)/(μ_1 +tan θ))+(1/μ)))  ⇒(F/(mg))=(1/(((1−μ_1  tan θ)/(μ_1 +tan θ))+(1/μ)))

CASE3:ascase2,butwithfrictioncoefficientμ10betweentheplankandtrolley.tanϕ=μtanϕ1=μ1φ=θ+ϕ1θsin1bLCDsin(π2ϕθ)=ACsinϕCD=Lcos(ϕ+θ)2sinϕ=L2(cosθtanϕsinθ)=L2(cosθμsinθ)CDsin(π2φ+θ)=CBsinφCD=(bsinθL2)cos(φθ)sinφ=(bsinθL2)(cosθtanφ+sinθ)L2(cosθμsinθ)=(bsinθL2)(cosθtanφ+sinθ)1μtanθ=(2bLsinθ1)(1tanφ+tanθ)1μtanθ=(2bLsinθ1)(1μ1tanθtanθ+μ1+tanθ)(2bLsinθ1)(1μ1tanθtanθ+μ1+tanθ)+tanθ=1μθ=....Rsinφ=mgsin(ϕ+φ)R=mgsinφsin(ϕ+φ)=mgsinϕtanφ+cosϕF=Rsinϕ=mg1tanφ+1tanϕ=mg1μ1tanθμ1+tanθ+1μFmg=11μ1tanθμ1+tanθ+1μ

Answered by ajfour last updated on 04/Jan/24

Commented by ajfour last updated on 04/Jan/24

Case: free roller vontact between  plank and trolley.  μ(mg−Ncos θ)=Nsin θ   ⇒  N=((μmg)/(sin θ+μcos θ))          =((μmg(1+t^2 ))/(2t+μ(1−t^2 )))  &    N((b/(sin θ)))=((mgLcos θ)/2)  ⇒ N=((mgL)/(4b))sin 2θ=((mgL()/(4b))((4t)(1−t^2 ))/((1+t^2 )^2 ))  If t=tan (θ/2)  ⇒  μ=(sin θ+μcos θ)(((Lsin θcos θ)/(2b)))  or  ((2t+μ(1−t^2 ))/((1+t^2 )))=((μ(b/L)(1+t^2 )^2 )/(t(1−t^2 )))  t(1−t^2 ){2t+μ(1−t^2 )}=kμ(1+t^2 )^3   matter of degree six..  a=(sin θ+ccos θ)sin θcos

Case:freerollervontactbetweenplankandtrolley.μ(mgNcosθ)=NsinθN=μmgsinθ+μcosθ=μmg(1+t2)2t+μ(1t2)&N(bsinθ)=mgLcosθ2N=mgL4bsin2θ=mgL(4b4t)(1t2)(1+t2)2Ift=tanθ2μ=(sinθ+μcosθ)(Lsinθcosθ2b)or2t+μ(1t2)(1+t2)=μ(b/L)(1+t2)2t(1t2)t(1t2){2t+μ(1t2)}=kμ(1+t2)3matterofdegreesix..a=(sinθ+ccosθ)sinθcos

Commented by mr W last updated on 04/Jan/24

μ(mg−Ncos θ)=F+Nsin θ  F=N sin θ

μ(mgNcosθ)=F+NsinθF=Nsinθ

Commented by mr W last updated on 04/Jan/24

θ must fulfill  sin θ cos θ(((sin θ)/μ)+cos θ)=((2b)/L)

θmustfulfillsinθcosθ(sinθμ+cosθ)=2bL

Commented by mr W last updated on 04/Jan/24

we get the same for (F/(mg)):  N=((μmg)/(sin θ+μ cos θ))  F=N sin θ=((μmg sin θ)/(sin θ+μ cos θ))=((mg)/((1/(tan θ))+(1/μ)))  ⇒(F/(mg))=(1/((1/μ)+(1/(tan θ))))

wegetthesameforFmg:N=μmgsinθ+μcosθF=Nsinθ=μmgsinθsinθ+μcosθ=mg1tanθ+1μFmg=11μ+1tanθ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com