Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 202882 by dimentri last updated on 05/Jan/24

    ⇃

Answered by cortano12 last updated on 05/Jan/24

   { ((5∫_3 ^6 f(x)dx=10)),((5∫_1 ^6 f(x)dx=2)) :}    ⇒∫_1 ^6 f(x)dx = ∫_1 ^3 f(x)dx+∫_3 ^6 f(x)dx   ⇒5∫_1 ^6 f(x)dx = 5∫_1 ^3 f(x)dx+5∫_3 ^6 f(x)dx   ⇒2 = 5∫_1 ^3 f(x)dx+10   ⇒5∫_1 ^3 f(x)dx = −8

{563f(x)dx=10561f(x)dx=261f(x)dx=31f(x)dx+63f(x)dx561f(x)dx=531f(x)dx+563f(x)dx2=531f(x)dx+10531f(x)dx=8

Answered by MM42 last updated on 05/Jan/24

∫_1 ^3 5f=∫_1 ^6 5f+∫_6 ^3 5f=2−10=−8 ✓

135f=165f+635f=210=8

Answered by aba last updated on 05/Jan/24

∫_1 ^6 f(x)dx=∫_1 ^3 f(x)dx+∫_3 ^6 f(x)dx  ⇒∫_1 ^3 f(x)dx=∫_1 ^6 f(x)−∫_3 ^6 f(3)dx  ⇒ 5∫_1 ^3 f(x)dx=5.(2/5)−5.2  ⇒ ∫_1 ^3 5f(x)dx=−8✓✓

16f(x)dx=13f(x)dx+36f(x)dx13f(x)dx=16f(x)36f(3)dx513f(x)dx=5.255.2135f(x)dx=8

Terms of Service

Privacy Policy

Contact: info@tinkutara.com