Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 202976 by ajfour last updated on 06/Jan/24

Commented by ajfour last updated on 06/Jan/24

If tan α=t , find h.

Iftanα=t,findh.

Answered by mr W last updated on 06/Jan/24

Commented by mr W last updated on 06/Jan/24

b^2 =(1−h)(1+h)=1−h^2   ⇒b=(√(1−h^2 ))  tan α_1 =(h/b)  tan α_2 =((1−h)/b)  α=α_1 +α_2   tan α=(((h/b)+((1−h)/b))/(1−((h(1−h))/b^2 )))=(√((1+h)/(1−h)))=t  ⇒h=((t^2 −1)/(t^2 +1))

b2=(1h)(1+h)=1h2b=1h2tanα1=hbtanα2=1hbα=α1+α2tanα=hb+1hb1h(1h)b2=1+h1h=th=t21t2+1

Commented by Frix last updated on 06/Jan/24

Yes. And with t=tan α we have  h=−cos 2α =1−2cos^2  α

Yes.Andwitht=tanαwehaveh=cos2α=12cos2α

Answered by a.lgnaoui last updated on 06/Jan/24

2𝛂+λ=π     λ=π−2𝛂  AB^2 =2(1+cos 2𝛂)    OA^2 =1  AB^2 −OA^2 =(1−h)^2 −h^2   2(1+cos 2𝛂)−1=1−2h  2cos 2𝛂=−2h      cos 2𝛂=−h        ⇒     h=((t^2 −1)/(1+t^2 ))

2α+λ=πλ=π2αAB2=2(1+cos2α)OA2=1AB2OA2=(1h)2h22(1+cos2α)1=12h2cos2α=2hcos2α=hh=t211+t2

Commented by a.lgnaoui last updated on 06/Jan/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com