Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 202988 by sonukgindia last updated on 06/Jan/24

Commented by Frix last updated on 06/Jan/24

By parts.

Byparts.

Answered by MM42 last updated on 07/Jan/24

lnx=u⇒(dx/x)=du  sin^(−1) xdx=dv⇒xsin^(−1) x+(√(1−x^2 ))=v  ⇒I=xsin^(−1) xlnx+(√(1−x^2 ))lnx  −∫ sin^(−1) xdx−∫((√(1−x^2 ))/x)dx  ★ ∫ ((√(1−x^2 ))/x)dx→^(x=sinu) =∫ ((cos^2 u)/(sinu)) du  =∫ ((1/(sinu))−sinu)du=ln(tan(u/2))+cosu  =((1−(√(1−x^2 )))/x^2 )+(√(1−x^2 ))  ⇒I=(lnx−1)(xsin^(−1) x+(√(1−x^2 )))−((1+(√(1−x^2 )))/x^2 )−(√(1−x^2 ))   ✓

lnx=udxx=dusin1xdx=dvxsin1x+1x2=vI=xsin1xlnx+1x2lnxsin1xdx1x2xdx1x2xdxx=sinu=cos2usinudu=(1sinusinu)du=ln(tanu2)+cosu=11x2x2+1x2I=(lnx1)(xsin1x+1x2)1+1x2x21x2

Commented by MathematicalUser2357 last updated on 11/Jan/24

(ln x−1)(xsin^(−1) x+(√(1−x^2 )))−((1+(√(1−x^2 )))/x^2 )−(√(1−x^2 ))+C

(lnx1)(xsin1x+1x2)1+1x2x21x2+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com