Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 203002 by mr W last updated on 07/Jan/24

Solve for x∈R  x^4 +4x−3=0

SolveforxRx4+4x3=0

Answered by ajfour last updated on 07/Jan/24

p^2 (p^4 +12)=16  ⇒  (p^2 /2)^3 +3(p^2 /2)^2 =2  (p^2 /2)=(((√2)+1))^(1/3) −(((√2)−1))^(1/3)   now x is easy.

p2(p4+12)=16(p2/2)3+3(p2/2)2=2p22=2+13213nowxiseasy.

Commented by ajfour last updated on 07/Jan/24

Answered by mr W last updated on 07/Jan/24

solve x^4 +4x−3=0    let′s generally look at the equation  x^4 +px+q=0.  say f(x)=x^4 +px+q  lim_(x→−∞) f(x)=+∞  lim_(x→+∞) f(x)=+∞  f′(x)=4x^3 +p=0 ⇒x=−((p/4))^(1/3)   that means f(x) has minimum at  x_m =−((p/4))^(1/3) .  f(x)_(min) =[−((p/4))^(1/3) ]^4 +p[−((p/4))^(1/3) ]+q=−3((p/4))^(4/3) +q  there are three cases, see diagram  below.    case 1:   f(x)_(min) =−3((p/4))^(4/3) +q>0  i.e. ((p/4))^4 −((q/3))^3 <0  ⇒f(x)=0 has no real root.    case 2:  f(x)_(min) =−3((p/4))^(4/3) +q=0  i.e. ((p/4))^4 −((q/3))^3 =0  ⇒f(x)=0 has a double real root  x_(1,2) =x_m = −((p/4))^(1/3)     case 3:  f(x)_(min) =−3((p/4))^(4/3) +q=p<0  i.e. ((p/4))^4 −((q/3))^3 >0  ⇒f(x)=0 has two real roots.

solvex4+4x3=0letsgenerallylookattheequationx4+px+q=0.sayf(x)=x4+px+qlimxf(x)=+limx+f(x)=+f(x)=4x3+p=0x=p43thatmeansf(x)hasminimumatxm=(p4)13.f(x)min=[(p4)13]4+p[(p4)13]+q=3(p4)43+qtherearethreecases,seediagrambelow.case1:f(x)min=3(p4)43+q>0i.e.(p4)4(q3)3<0f(x)=0hasnorealroot.case2:f(x)min=3(p4)43+q=0i.e.(p4)4(q3)3=0f(x)=0hasadoublerealrootx1,2=xm=(p4)13case3:f(x)min=3(p4)43+q=p<0i.e.(p4)4(q3)3>0f(x)=0hastworealroots.

Commented by mr W last updated on 07/Jan/24

Commented by mr W last updated on 07/Jan/24

x^4 +px+q=0  (x^2 +ax+b)(x^2 +cx+d)=x^4 +px+q  x^4 +(a+c)x^3 +(b+d+ac)x^2 +(bc+ad)x+bd=x^4 +px+q  a+c=0 ⇒c=−a  b+d+ac=0 ⇒d=a^2 −b=(a^2 /2)+(p/(2a))  bc+ad=p ⇒a^3 −2ba=p ⇒b=((a^3 −p)/(2a))=(a^2 /2)−(p/(2a))  bd=q ⇒b(a^2 −b)=q   ⇒(((a^3 −p)/(2a)))(a^2 −((a^3 −p)/(2a)))=q  ⇒a^6 −4qa^2 −p^2 =0  Δ=(−((4q)/3))^3 +(−(p^2 /2))^2 =64[((p/4))^4 −((q/3))^3 ]  if ((p/4))^4 −((q/3))^3 ≥0, Δ≥0  ⇒a^2 =((8(√(((p/4))^4 −((q/3))^3 ))+(p^2 /2)))^(1/3) −((8(√(((p/4))^4 −((q/3))^3 ))−(p^2 /2)))^(1/3)   ⇒a=±(√(((8(√(((p/4))^4 −((q/3))^3 ))+(p^2 /2)))^(1/3) −((8(√(((p/4))^4 −((q/3))^3 ))−(p^2 /2)))^(1/3) ))  for real roots we take the same sign  for a as the sign of p.    example with p=4, q=−3  a=(√(2((((√2)+1))^(1/3) −(((√2)−1))^(1/3) )))  x_(1,2) =((−a±(√(a^2 −4b)))/2)         =(1/2)(−a±(√(((2p)/a)−a^2 )))         ≈−1.7844 ∨ 0.6925

x4+px+q=0(x2+ax+b)(x2+cx+d)=x4+px+qx4+(a+c)x3+(b+d+ac)x2+(bc+ad)x+bd=x4+px+qa+c=0c=ab+d+ac=0d=a2b=a22+p2abc+ad=pa32ba=pb=a3p2a=a22p2abd=qb(a2b)=q(a3p2a)(a2a3p2a)=qa64qa2p2=0Δ=(4q3)3+(p22)2=64[(p4)4(q3)3]if(p4)4(q3)30,Δ0a2=8(p4)4(q3)3+p2238(p4)4(q3)3p223a=±8(p4)4(q3)3+p2238(p4)4(q3)3p223forrealrootswetakethesamesignforaasthesignofp.examplewithp=4,q=3a=2(2+13213)x1,2=a±a24b2=12(a±2paa2)1.78440.6925

Commented by ajfour last updated on 07/Jan/24

yes this is the simpler in fact. Thank you sir. but b=0 in my formula for x would be equivalently simple too.

Commented by mr W last updated on 07/Jan/24

you are right sir! thanks!

youarerightsir!thanks!

Answered by Frix last updated on 07/Jan/24

Just the same but another point of view.  x^4 +px+q=0  p=−4α(α^2 +β)  q=(α^2 −β)(3α^2 +β)  x^4 −4α(α^2 +β)x+(α^2 −β)(3α^2 +β)=0  (x^2 −2αx+α^2 −β)(x^2 +2αx+3α^2 −β)=0  x_(1, 2) =α±(√β)  x_(2, 3) =−α±(√(−(2α^2 +β)))  We end up with  α^6 −((qα^2 )/4)−(p^2 /(64))=0∧β=−α^2 −(p/(4α))

Justthesamebutanotherpointofview.x4+px+q=0p=4α(α2+β)q=(α2β)(3α2+β)x44α(α2+β)x+(α2β)(3α2+β)=0(x22αx+α2β)(x2+2αx+3α2β)=0x1,2=α±βx2,3=α±(2α2+β)Weendupwithα6qα24p264=0β=α2p4α

Commented by mr W last updated on 07/Jan/24

thanks sir!

thankssir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com