Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 203018 by mr W last updated on 07/Jan/24

Commented by mr W last updated on 07/Jan/24

[an unsolved old question Q202864]

[anunsolvedoldquestionQ202864]

Commented by esmaeil last updated on 07/Jan/24

a

Commented by MathematicalUser2357 last updated on 09/Jan/24

an unquolved 202864

anunquolved202864

Answered by mr W last updated on 07/Jan/24

Commented by mr W last updated on 07/Jan/24

we can see that the three green lines  are parallel to each other.  let α=(q/p), β=(r/p)  1+((2825+B)/(690+A))=(((q+r)/p))^2 =(α+β)^2   ⇒A=((2825+B)/((α+β)^2 −1))−690  1+(B/(46))=((p/q))^2 =(1/α^2 ) ⇒α=(1/( (√(1+(B/(46))))))  (B/(2825))=((p+q)/r)=((1+α)/β) ⇒β=((2825)/B)(1+(1/( (√(1+(B/(46)))))))  1+((2825×2+B)/A)=(((q+2r)/p))^2 =(α+2β)^2   ⇒A=((2825×2+B)/((α+2β)^2 −1))  ((2825+B)/((α+β)^2 −1))−690=((2825×2+B)/((α+2β)^2 −1))  ⇒B≈1593.2072  ⇒A≈412.5313  ?=A+B≈2005.7385 ✓

wecanseethatthethreegreenlinesareparalleltoeachother.letα=qp,β=rp1+2825+B690+A=(q+rp)2=(α+β)2A=2825+B(α+β)216901+B46=(pq)2=1α2α=11+B46B2825=p+qr=1+αββ=2825B(1+11+B46)1+2825×2+BA=(q+2rp)2=(α+2β)2A=2825×2+B(α+2β)212825+B(α+β)21690=2825×2+B(α+2β)21B1593.2072A412.5313?=A+B2005.7385

Terms of Service

Privacy Policy

Contact: info@tinkutara.com