Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 203035 by Frix last updated on 07/Jan/24

e=2  Proof:  Let x=((e+2)/2)  2x=e+2  2x(e−2)=(e+2)(e−2)  2ex−4x=e^2 −4  −4x+4=−2ex+e^2   x^2 −4x+4=x^2 −2ex+e^2   (x−2)^2 =(x−e)^2   (√((x−2)^2 ))=(√((x−e)^2 ))  x−2=x−e  −2=−e  e=2

e=2Proof:Letx=e+222x=e+22x(e2)=(e+2)(e2)2ex4x=e244x+4=2ex+e2x24x+4=x22ex+e2(x2)2=(xe)2(x2)2=(xe)2x2=xe2=ee=2

Commented by Calculusboy last updated on 07/Jan/24

nice sir

nicesir

Commented by deleteduser1 last updated on 07/Jan/24

2x=e+2⇔2x(e−2)=(e+2)(e−2) is only valid  when e≠2  (√((x−2)^2 ))=(√((x−e)^2 ))⇒x−2=x−e is only valid  when  x≥2 ∧ x≥e  e here also has nothing to do with Euler′s   number(≈2.718281). So, it is acting like a  random variable. It could also be a,b,s,t,x...

2x=e+22x(e2)=(e+2)(e2)isonlyvalidwhene2(x2)2=(xe)2x2=xeisonlyvalidwhenx2xeeherealsohasnothingtodowithEulersnumber(2.718281).So,itisactinglikearandomvariable.Itcouldalsobea,b,s,t,x...

Commented by Frix last updated on 08/Jan/24

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com