Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 203066 by mathlove last updated on 09/Jan/24

if p=(x^2 /(x−2))−(x/(1+(2/x)))−(4/(1+(4/x^2 )))   and x−(4/x)=2  then show that  (((32)/p))^2 =80

ifp=x2x2x1+2x41+4x2andx4x=2thenshowthat(32p)2=80

Answered by Rasheed.Sindhi last updated on 09/Jan/24

if p=(x^2 /(x−2))−(x/(1+(2/x)))−(4/(1+(4/x^2 )))   and x−(4/x)=2  then show that  (((32)/p))^2 =80_ _                              •p=(x^2 /(x−2))−(x/(1+(2/x)))−(4/(1+(4/x^2 )))     =(x/(1−(2/x)))−(x/(1+(2/x)))−(4/(1+(4/x^2 )))    =((x(1+(2/x))(1+(4/x^2 ))−x(1−(2/x))(1+(4/x^2 ))−4(1−(2/x))(1+(2/x)))/((1−(2/x))(1+(2/x))(1+(4/x^2 ))))    =(((x+2)(1+(4/x^2 ))+(2−x)(1+(4/x^2 ))−4(1−(2/x))(1+(2/x)))/((1−(4/x^2 ))(1+(4/x^2 ))))    =(((1+(4/x^2 ))(x+2+2−x)−4(1−(2/x))(1+(2/x)))/((1−((16)/x^4 ))))    =((4(1+(4/x^2 ))−4(1−(4/x^2 )))/((x^4 −16)/x^4 ))    =((4(1+(4/x^2 )−1+(4/x^2 )))/((x^4 −16)/x^4 ))    =((4((8/x^2 )))/((x^4 −16)/x^4 ))     =((32)/x^2 )×(x^4 /(x^4 −16))    =((32x^2 )/(x^4 −16))    =((32)/(x^2 −((16)/x^2 )))   =((32)/((x−(4/x))(x+(4/x))))   =((32)/((2)(x+(4/x))))    p=((16)/(x+(4/x)))  • p^2 =((16^2 )/((x+(4/x))^2 ))=((16^2 )/((x−(4/x))^2 +16))=((16^2 )/((2)^2 +16))=((16^2 )/(20))  ▶ (((32)/p))^2 =((32^2 )/p^2 )=((32^2 )/((16^2 )/(20)))=32^2 ×((20)/(16^2 ))=80

ifp=x2x2x1+2x41+4x2andx4x=2thenshowthat(32p)2=80p=x2x2x1+2x41+4x2=x12xx1+2x41+4x2=x(1+2x)(1+4x2)x(12x)(1+4x2)4(12x)(1+2x)(12x)(1+2x)(1+4x2)=(x+2)(1+4x2)+(2x)(1+4x2)4(12x)(1+2x)(14x2)(1+4x2)=(1+4x2)(x+2+2x)4(12x)(1+2x)(116x4)=4(1+4x2)4(14x2)x416x4=4(1+4x21+4x2)x416x4=4(8x2)x416x4=32x2×x4x416=32x2x416=32x216x2=32(x4x)(x+4x)=32(2)(x+4x)p=16x+4xp2=162(x+4x)2=162(x4x)2+16=162(2)2+16=16220(32p)2=322p2=32216220=322×20162=80

Answered by Rasheed.Sindhi last updated on 10/Jan/24

x−(4/x)=2⇒ determinant (((x^2 =2x+4)))   p=(x^2 /(x−2))−(x/(1+(2/x)))−(4/(1+(4/x^2 )))     =((2x+4)/(x−2))−(x/(1+(2/x)))−(4/(1+(4/(2x+4))))    =((2(x+2))/(x−2))−(x^2 /(x+2))−(4/((2x+8)/(2x+4)))    =((2(x+2))/(x−2))−((2x+4)/(x+2))−((4(x+2))/(x+4))    =((2(x+2))/(x−2))−((4(x+2))/(x+4))−2    =((2(x+2)(x+4)−4(x+2)(x−2))/((x−2)(x+4)))−2    =((2x^2 +12x+16−4x^2 +16)/(x^2 +2x−8))−2    =((−2x^2 +12x+32)/(x^2 +2x−8))−2    =((−2x^2 +12x+32−2x^2 −4x+16)/(x^2 +2x−8))    =((−4x^2 +8x+48)/(x^2 +2x−8))    =((−4(2x+4)+8x+48)/(2x+4+2x−8))  =((−8x−16+8x+48)/(4x−4))=((32)/(4(x−1)))=(8/(x−1))  ▶(((32)/p))^2 =(((32)/(8/(x−1))))^2 =(((32(x−1))/8))^2   =16(x^2 −2x+1)  =16(2x+4−2x+1)=16(5)=80

x4x=2x2=2x+4p=x2x2x1+2x41+4x2=2x+4x2x1+2x41+42x+4=2(x+2)x2x2x+242x+82x+4=2(x+2)x22x+4x+24(x+2)x+4=2(x+2)x24(x+2)x+42=2(x+2)(x+4)4(x+2)(x2)(x2)(x+4)2=2x2+12x+164x2+16x2+2x82=2x2+12x+32x2+2x82=2x2+12x+322x24x+16x2+2x8=4x2+8x+48x2+2x8=4(2x+4)+8x+482x+4+2x8=8x16+8x+484x4=324(x1)=8x1(32p)2=(328x1)2=(32(x1)8)2=16(x22x+1)=16(2x+42x+1)=16(5)=80

Commented by mathlove last updated on 09/Jan/24

ok thanks

okthanks

Answered by deleteduser1 last updated on 09/Jan/24

x^2 −4=2x⇒(x−2)(x+2)=2x  (x−1)^2 −5=0⇒x=1+_− (√5)  ⇒p=(x/(2/(x+2)))−(x/(2/(x−2)))−(4/(((x+4))/((x+2))))=((x(x+2)−x(x−2))/2)−((4(x+2))/(x+4))  =2x−((4(x+2))/(x+4))=((2(x^2 +2x−4))/(x+4))=((8x)/(x+4))  (((32)/p))^2 =[((32(x+4))/(8x))]^2 =[((4(x+4))/x)]^2 =(4+((16)/x))^2 =(+_− 4(√5))^2 =80

x24=2x(x2)(x+2)=2x(x1)25=0x=1+5p=x2x+2x2x24(x+4)(x+2)=x(x+2)x(x2)24(x+2)x+4=2x4(x+2)x+4=2(x2+2x4)x+4=8xx+4(32p)2=[32(x+4)8x]2=[4(x+4)x]2=(4+16x)2=(+45)2=80

Answered by deleteduser1 last updated on 09/Jan/24

p=(x^2 /(x−2))−(x^2 /(x+2))−((4x^2 )/(x^2 +4))=4x^2 ((1/(x^2 −4))−(1/(x^2 +4)))  =((32x^2 )/((x^2 −4)(x^2 +4)))=((32x^2 )/(2x(2x+8)))=((8x)/(x+4))  ⇒(((32)/p))^2 =[((4(x+4))/x)]^2 =(+_− 4(√5))^2 =80

p=x2x2x2x+24x2x2+4=4x2(1x241x2+4)=32x2(x24)(x2+4)=32x22x(2x+8)=8xx+4(32p)2=[4(x+4)x]2=(+45)2=80

Answered by Rasheed.Sindhi last updated on 09/Jan/24

x−(4/x)=2⇒ determinant ((((4/x)=x−2)))⇒ determinant ((((2/x)=((x−2)/2))))                   ⇒ determinant (((x^2 =2x+4)))   p=(x^2 /(x−2))−(x/(1+(2/x)))−(4/(1+(4/x^2 )))     =(x/(1−(2/x)))−(x/(1+(2/x)))−(4/(1+(4/x)∙(1/x)))    =(x/(1−((x−2)/2)))−(x/(1+((x−2)/2)))−(4/(1+(x−2)((1/x))))    =(x/((2−x+2)/2))−(x/((2+x−2)/2))−(4/(1+((x−2)/x)))    =(x/((4−x)/2))−(x/(x/2))−(4/(1+1−(2/x)))    =((2x)/(4−x))−2−(4/(2−((x−2)/2)))    =((2x)/(4−x))−2−(4/((6−x)/2))    =((2x)/(4−x))−(8/(6−x))−2     =((12x−2x^2 −32+8x)/(x^2 −10x+24))−2    =((−2x^2 +20x−32−2x^2 +20x−48)/(x^2 −10x+24))    =((−4x^2 +40x−96−80+96)/(x^2 −10x+24))=((−4(2x+4)+40x−80)/(2x+4−10x+24))  =((−8x−16+40x−80)/(−8x+28))  =((32x−96)/(−8x+28))  =((8x−24)/(−2x+7))  ▶(((32)/p))^2 =((32^2 )/p^2 )=((32^2 )/((64(x−3)^2 )/((−2x+7)^2 )))  =((32×32(−2x+7)^2 )/(64(x−3)^2 ))=((16(4x^2 −28x+49))/(x^2 −6x+9))  =((16{4(2x+4)−28x+49})/(2x+4−6x+9))=((16(−20x+65))/(−4x+13))=((16×5(−4x+13))/(−4x+13))=80

x4x=24x=x22x=x22x2=2x+4p=x2x2x1+2x41+4x2=x12xx1+2x41+4x1x=x1x22x1+x2241+(x2)(1x)=x2x+22x2+x2241+x2x=x4x2xx241+12x=2x4x242x22=2x4x246x2=2x4x86x2=12x2x232+8xx210x+242=2x2+20x322x2+20x48x210x+24=4x2+40x9680+96x210x+24=4(2x+4)+40x802x+410x+24=8x16+40x808x+28=32x968x+28=8x242x+7(32p)2=322p2=32264(x3)2(2x+7)2=32×32(2x+7)264(x3)2=16(4x228x+49)x26x+9=16{4(2x+4)28x+49}2x+46x+9=16(20x+65)4x+13=16×5(4x+13)4x+13=80

Commented by mathlove last updated on 10/Jan/24

so good

sogood

Terms of Service

Privacy Policy

Contact: info@tinkutara.com