Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 20307 by Tinkutara last updated on 25/Aug/17

Show that a(b − c)x^2  + b(c − a)xy +  c(a − b)y^2  will be a perfect square if a,  b, c are in H.P.

$$\mathrm{Show}\:\mathrm{that}\:{a}\left({b}\:−\:{c}\right){x}^{\mathrm{2}} \:+\:{b}\left({c}\:−\:{a}\right){xy}\:+ \\ $$$${c}\left({a}\:−\:{b}\right){y}^{\mathrm{2}} \:\mathrm{will}\:\mathrm{be}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{square}\:\mathrm{if}\:{a}, \\ $$$${b},\:{c}\:\mathrm{are}\:\mathrm{in}\:\mathrm{H}.\mathrm{P}. \\ $$

Answered by ajfour last updated on 25/Aug/17

=x^2 [c(a−b)((y/x))^2 +b(c−a)((y/x))+a(b−c)]  =c(a−b)x^2 {((y/x))^2 +2[((b(c−a))/(2c(a−b)))]x+      [((b(c−a))/(2c(a−b)))]^2 }−((b^2 (c−a)^2 )/(4c(a−b)))+a(b−c)  =c(a−b)x^2 {(y/x)+((b(c−a))/(2c(a−b)))}^2 +            ((4ac(a−b)(b−c)−b^2 (c−a)^2 )/(4c(a−b)))  ⇒ expression is a perfect square  if the constant term is zero,  ⇒ 4ac(ab−ac−b^2 +bc)                   =b^2 c^2 −2b^2 ac+a^2 b^2   ⇒   4a^2 bc−4a^2 c^2 −4b^2 ac+4abc^2                    =b^2 c^2 −2b^2 ac+a^2 b^2   ⇒ 4abc(a+c)=4a^2 c^2 +b^2 (a^2 +c^2 +2ac)  ⇒ 4abc(a+c)=4a^2 c^2 +b^2 (a+c)^2   ⇒  [b(a+c)−2ac]^2 =0  ⇒    b=((2ac)/(a+c))   ⇒   a, b, c need be  in H.P. •

$$={x}^{\mathrm{2}} \left[{c}\left({a}−{b}\right)\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} +{b}\left({c}−{a}\right)\left(\frac{{y}}{{x}}\right)+{a}\left({b}−{c}\right)\right] \\ $$$$={c}\left({a}−{b}\right){x}^{\mathrm{2}} \left\{\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} +\mathrm{2}\left[\frac{{b}\left({c}−{a}\right)}{\mathrm{2}{c}\left({a}−{b}\right)}\right]{x}+\right. \\ $$$$\left.\:\:\:\:\left[\frac{{b}\left({c}−{a}\right)}{\mathrm{2}{c}\left({a}−{b}\right)}\right]^{\mathrm{2}} \right\}−\frac{{b}^{\mathrm{2}} \left({c}−{a}\right)^{\mathrm{2}} }{\mathrm{4}{c}\left({a}−{b}\right)}+{a}\left({b}−{c}\right) \\ $$$$={c}\left({a}−{b}\right){x}^{\mathrm{2}} \left\{\frac{{y}}{{x}}+\frac{{b}\left({c}−{a}\right)}{\mathrm{2}{c}\left({a}−{b}\right)}\right\}^{\mathrm{2}} + \\ $$$$\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{4}{ac}\left({a}−{b}\right)\left({b}−{c}\right)−{b}^{\mathrm{2}} \left({c}−{a}\right)^{\mathrm{2}} }{\mathrm{4}{c}\left({a}−{b}\right)} \\ $$$$\Rightarrow\:{expression}\:{is}\:{a}\:{perfect}\:{square} \\ $$$${if}\:{the}\:{constant}\:{term}\:{is}\:{zero}, \\ $$$$\Rightarrow\:\mathrm{4}{ac}\left({ab}−{ac}−{b}^{\mathrm{2}} +{bc}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={b}^{\mathrm{2}} {c}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} {ac}+{a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\mathrm{4}{a}^{\mathrm{2}} {bc}−\mathrm{4}{a}^{\mathrm{2}} {c}^{\mathrm{2}} −\mathrm{4}{b}^{\mathrm{2}} {ac}+\mathrm{4}{abc}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={b}^{\mathrm{2}} {c}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} {ac}+{a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{4}{abc}\left({a}+{c}\right)=\mathrm{4}{a}^{\mathrm{2}} {c}^{\mathrm{2}} +{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}{ac}\right) \\ $$$$\Rightarrow\:\mathrm{4}{abc}\left({a}+{c}\right)=\mathrm{4}{a}^{\mathrm{2}} {c}^{\mathrm{2}} +{b}^{\mathrm{2}} \left({a}+{c}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\left[{b}\left({a}+{c}\right)−\mathrm{2}{ac}\right]^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:{b}=\frac{\mathrm{2}{ac}}{{a}+{c}}\: \\ $$$$\Rightarrow\:\:\:{a},\:{b},\:{c}\:{need}\:{be}\:\:{in}\:{H}.{P}.\:\bullet \\ $$

Commented by Tinkutara last updated on 25/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Answered by $@ty@m last updated on 26/Aug/17

discriminant=0  ⇒{b(c−a)y}^2 −4ac(b−c)(a−b)y^2 =0  ⇒b^2 (c−a)^2 −4ac(b−c)(a−b)=0  ⇒b^2 (c−a)^2 =4ac(b−c)(a−b)  ⇒{a(b−c)+c(a−b)}^2 =4ac(b−c)(a−b)  ⇒{a(b−c)−c(a−b)}^2 =0  ⇒a(b−c)=c(a−b)  ⇒ab−ac=ca−cb  ⇒(1/c)−(1/b)=(1/b)−(1/a) (dividing by abc)  ⇒a, b, c are in H.P.

$${discriminant}=\mathrm{0} \\ $$$$\Rightarrow\left\{{b}\left({c}−{a}\right){y}\right\}^{\mathrm{2}} −\mathrm{4}{ac}\left({b}−{c}\right)\left({a}−{b}\right){y}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{b}^{\mathrm{2}} \left({c}−{a}\right)^{\mathrm{2}} −\mathrm{4}{ac}\left({b}−{c}\right)\left({a}−{b}\right)=\mathrm{0} \\ $$$$\Rightarrow{b}^{\mathrm{2}} \left({c}−{a}\right)^{\mathrm{2}} =\mathrm{4}{ac}\left({b}−{c}\right)\left({a}−{b}\right) \\ $$$$\Rightarrow\left\{{a}\left({b}−{c}\right)+{c}\left({a}−{b}\right)\right\}^{\mathrm{2}} =\mathrm{4}{ac}\left({b}−{c}\right)\left({a}−{b}\right) \\ $$$$\Rightarrow\left\{{a}\left({b}−{c}\right)−{c}\left({a}−{b}\right)\right\}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{a}\left({b}−{c}\right)={c}\left({a}−{b}\right) \\ $$$$\Rightarrow{ab}−{ac}={ca}−{cb} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{c}}−\frac{\mathrm{1}}{{b}}=\frac{\mathrm{1}}{{b}}−\frac{\mathrm{1}}{{a}}\:\left({dividing}\:{by}\:{abc}\right) \\ $$$$\Rightarrow{a},\:{b},\:{c}\:{are}\:{in}\:{H}.{P}. \\ $$

Commented by $@ty@m last updated on 25/Aug/17

A quadratic expression is a perfect   square⇒discriminant=0

$${A}\:{quadratic}\:{expression}\:{is}\:{a}\:{perfect}\: \\ $$$${square}\Rightarrow{discriminant}=\mathrm{0} \\ $$

Commented by ajfour last updated on 25/Aug/17

thanks.

$${thanks}. \\ $$

Commented by Tinkutara last updated on 25/Aug/17

Thank you very much Satyam!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Satyam}! \\ $$

Commented by $@ty@m last updated on 26/Aug/17

∧ simpler method

$$\wedge\:{simpler}\:{method} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com