Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 203232 by Mathstar last updated on 13/Jan/24

Answered by mr W last updated on 13/Jan/24

Commented by mr W last updated on 13/Jan/24

center of circle at C(h, k)  radius of circle r  y=x−x^3   y′=1−3x^2   at point O(0, 0):  tan ϕ=y′=1 ⇒ϕ=45°  at point P(p, q):  q=p−p^3   tan θ=−y′=3p^2 −1    h=r sin ϕ=(r/( (√2)))  k=−r cos ϕ=−(r/( (√2)))  h=p−r sin θ  k=q−r cos θ  ⇒p−r sin θ=(r/( (√2))) ⇒p=((1/( (√2)))+sin θ)r  ⇒p−p^3 −r cos θ=−(r/( (√2))) ⇒p(1−p^2 )=(−(1/( (√2)))+cos θ)r  1−p^2 =((−1+(√2) cos θ)/(1+(√2) sin θ))  1−p^2 =((−1+(√2)×(1/( (√(1+(3p^2 −1)^2 )))))/(1+(√2)×((3p^2 −1)/( (√(1+(3p^2 −1)^2 ))))))  ⇒1−p^2 =(((√2)−(√(1+(3p^2 −1)^2 )))/( (√(1+(3p^2 −1)^2 ))+(√2)(3p^2 −1)))  ⇒p≈1.1024  r=(p/((1/( (√2)))+((3p^2 −1)/( (√(1+(3p^2 −1)^2 ))))))≈0.6712 ✓

centerofcircleatC(h,k)radiusofcirclery=xx3y=13x2atpointO(0,0):tanφ=y=1φ=45°atpointP(p,q):q=pp3tanθ=y=3p21h=rsinφ=r2k=rcosφ=r2h=prsinθk=qrcosθprsinθ=r2p=(12+sinθ)rpp3rcosθ=r2p(1p2)=(12+cosθ)r1p2=1+2cosθ1+2sinθ1p2=1+2×11+(3p21)21+2×3p211+(3p21)21p2=21+(3p21)21+(3p21)2+2(3p21)p1.1024r=p12+3p211+(3p21)20.6712

Commented by mr W last updated on 13/Jan/24

Commented by mr W last updated on 13/Jan/24

Commented by Mathstar last updated on 13/Jan/24

Thank you ��

Commented by MathematicalUser2357 last updated on 20/Jan/24

r=((4(√(3+3(√7))))/( 6(√2)+3(√(14))))

r=43+3762+314

Commented by mr W last updated on 20/Jan/24

i havn′t tried to get the exact solution.  can you show how you solved?

ihavnttriedtogettheexactsolution.canyoushowhowyousolved?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com