Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 203247 by mathlove last updated on 13/Jan/24

lim_(x→0)  x tan(π/2)(1+x)=?

limx0xtanπ2(1+x)=?

Answered by MM42 last updated on 13/Jan/24

=lim_(x→0)  −xcot(π/2)x=lim_(x→0)  −(((π/2)xcos(π/2)x)/(sin(π/2)x))×(2/π)  = −(2/π) ✓

=limx0xcotπ2x=limx0π2xcosπ2xsinπ2x×2π=2π

Commented by mathlove last updated on 13/Jan/24

way tan(π/2)(1+x)=−cotx

waytanπ2(1+x)=cotx

Commented by MM42 last updated on 13/Jan/24

ok  −cot(π/2)x

okcotπ2x

Answered by mr W last updated on 13/Jan/24

lim_(x→0) x tan (π/2)(1+x)  =lim_(x→0) ((x sin ((π/2)+((πx)/2)))/(cos ((π/2)+((πx)/2))))  =lim_(x→0) ((x sin ((π/2)−((πx)/2)))/(−cos ((π/2)−((πx)/2))))  =lim_(x→0) ((x cos (((πx)/2)))/(−sin (((πx)/2))))  =−(2/π)lim_(x→0) (((((πx)/2)))/(sin (((πx)/2))))×cos (((πx)/2))  =−(2/π)

limx0xtanπ2(1+x)=limx0xsin(π2+πx2)cos(π2+πx2)=limx0xsin(π2πx2)cos(π2πx2)=limx0xcos(πx2)sin(πx2)=2πlimx0(πx2)sin(πx2)×cos(πx2)=2π

Commented by mathlove last updated on 13/Jan/24

thats right  thanks sir

thatsrightthankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com