Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 203309 by hardmath last updated on 15/Jan/24

If   z_1 = 3 + 3(√3) i   and   z_2 = -1 − (√3) i  Find:   (z_1 ^( 3) /z_2 ^( 6) ) = ?

Ifz1=3+33iandz2=13iFind:z13z26=?

Answered by Rasheed.Sindhi last updated on 16/Jan/24

z_1 =3(1+(√3) i) ∧ z_2 =−(1+(√3) i)  ⇒z_1 =−3z_2   (z_1 ^( 3) /z_2 ^( 6) ) =(((−3z_2 )^3 )/z_2 ^6 )=((−27z_2 ^3 )/z_2 ^6 )=((−27)/z_2 ^3 )     z_2 +1=−(√3) i⇒z_2 ^2 +2z_2 +1=−3  z_2 ^2 =−2z_2 −4⇒z_2 ^3 =−2z_2 ^2 −4z_2    =−2(−2z_2 −4)−4z_2 =8  (z_1 ^( 3) /z_2 ^( 6) ) =((−27)/z_2 ^3 )=((−27)/8)=−((27)/8)

z1=3(1+3i)z2=(1+3i)z1=3z2z13z26=(3z2)3z26=27z23z26=27z23z2+1=3iz22+2z2+1=3z22=2z24z23=2z224z2=2(2z24)4z2=8z13z26=27z23=278=278

Commented by hardmath last updated on 19/Jan/24

thank you dear ser

thankyoudearser

Answered by behi834171 last updated on 15/Jan/24

z_1 =3(1+(√3)i),z_2 =−(1+(√3)i),z_1 =−3z_2   z_2 =−2((1/2)+((√3)/2)i)=−2(cos(𝛑/3)+i.sin(𝛑/3))=  =−2.e^(i.(𝛑/3)) ⇒z_2 ^3 =[−2e^(i.(𝛑/3)) ]^3 =−8e^(i.𝛑) =+8  ⇒(z_1 ^3 /z_2 ^6 )=((z_1 /z_2 ))^3 .(1/z_2 ^3 )=(−3)^3 .(1/8)=−((27)/( 8))  .■  [note!     e^(i.𝛑) =cos𝛑+i.sin𝛑=−1]

z1=3(1+3i),z2=(1+3i),z1=3z2z2=2(12+32i)=2(cosπ3+i.sinπ3)==2.ei.π3z23=[2ei.π3]3=8ei.π=+8z13z26=(z1z2)3.1z23=(3)3.18=278.[note!ei.π=cosπ+i.sinπ=1]

Commented by hardmath last updated on 19/Jan/24

thank you dear ser

thankyoudearser

Answered by Rasheed.Sindhi last updated on 16/Jan/24

z_1 −3=3(√3) i  z_1 ^2 −6z_1 +9=−27⇒z_1 ^2 =6z_1 −36  ⇒z_1 ^3 =6z_1 ^2 −36z_1 =6(6z_1 −36)−36z_1 =−216     z_2 +1=−(√3) i  z_2 ^2 +2z_2 +1=−3⇒z_2 ^2 =−2z_2 −4  ⇒z_2 ^3 =−2z_2 ^2 −4z_2 =−2(−2z_2 −4)−4z_2 =8   ⇒z_2 ^6 =64     ▶(z_1 ^3 /z_2 ^6 )=((−216)/(64))=−((27)/8)

z13=33iz126z1+9=27z12=6z136z13=6z1236z1=6(6z136)36z1=216z2+1=3iz22+2z2+1=3z22=2z24z23=2z224z2=2(2z24)4z2=8z26=64z13z26=21664=278

Terms of Service

Privacy Policy

Contact: info@tinkutara.com