All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 203313 by CrispyXYZ last updated on 16/Jan/24
an+1=an2+2an−2,a1=3.ProvethatΣ1an+2⩽310.
Answered by witcher3 last updated on 16/Jan/24
{an+1=an2+2an−2a1=3an⩾n+2byrecursiona1=3⩾1+2truesuppose∀n⩾1an⩾n+2an+1=f(an);f(x)=x2+2x−2incresein[0,∞[an⩾n+2>0⇒an+1=f(an)⩾f(n+2)=(n+2)2+2(n+2)−2=n2+6n+6>n+3⇒an+1>n+3⇒∀n∈Nan⩾n+2an+1=an2+2an−2⇒an+1+2=an(an+2)⇒an+1+2an+2=an⩾n+2⇒∏nk=1ak+1+2ak+2⩾∏nk=1(k+2)⇒an+1+2a1+2⩾3.4....(n+2)=(n+2)!2⇒an+1+2⩾52(n+2)!an+2⩾52(n+1)!;∀n∈N⇒1an+2⩽25.1(n+1)!⇒∑n⩾11an+2⩽25∑n⩾11(n+1)!=25(∑n⩾01n!−2)e=∑n⩾01n!∑∞n=11an+2=25(e−2)<310proof⇔2(e−2)<32⇒e<2+34=2.75>etrue
Terms of Service
Privacy Policy
Contact: info@tinkutara.com