Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 203313 by CrispyXYZ last updated on 16/Jan/24

a_(n+1) =a_n ^2 +2a_n −2, a_1 =3.  Prove thatΣ (1/(a_n +2)) ≤ (3/(10)).

an+1=an2+2an2,a1=3.ProvethatΣ1an+2310.

Answered by witcher3 last updated on 16/Jan/24

 { ((a_(n+1) =a_n ^2 +2a_n −2)),((a_1 =3)) :}  a_n ≥n+2  by recursion a_1 =3≥1+2 true  suppose ∀n≥1 a_n ≥n+2  a_(n+1) =f(a_n );f(x)=x^2 +2x−2 increse in [0,∞[  a_n ≥n+2>0⇒a_(n+1) =f(a_n )≥f(n+2)=(n+2)^2 +2(n+2)−2  =n^2 +6n+6>n+3  ⇒a_(n+1) >n+3 ⇒∀n∈N a_n ≥n+2  a_(n+1) =a_n ^2 +2a_n −2⇒a_(n+1) +2=a_n (a_n +2)  ⇒((a_(n+1) +2)/(a_n +2))=a_n ≥n+2  ⇒Π_(k=1) ^n ((a_(k+1) +2)/(a_k +2))≥Π_(k=1) ^n (k+2)  ⇒((a_(n+1) +2)/(a_1 +2))≥3.4....(n+2)=(((n+2)!)/2)  ⇒a_(n+1) +2≥(5/2)(n+2)!  a_n +2≥(5/2)(n+1)!;∀n∈N  ⇒(1/(a_n +2))≤(2/5).(1/((n+1)!))⇒Σ_(n≥1) (1/(a_n +2))≤(2/5)Σ_(n≥1) (1/((n+1)!))=(2/5)(Σ_(n≥0) (1/(n!))−2)  e=Σ_(n≥0) (1/(n!))  Σ_(n=1) ^∞ (1/(a_n +2))=(2/5)(e−2)<(3/(10))  proof⇔2(e−2)<(3/2)⇒e<2+(3/4)=2.75>e true

{an+1=an2+2an2a1=3ann+2byrecursiona1=31+2truesupposen1ann+2an+1=f(an);f(x)=x2+2x2incresein[0,[ann+2>0an+1=f(an)f(n+2)=(n+2)2+2(n+2)2=n2+6n+6>n+3an+1>n+3nNann+2an+1=an2+2an2an+1+2=an(an+2)an+1+2an+2=ann+2nk=1ak+1+2ak+2nk=1(k+2)an+1+2a1+23.4....(n+2)=(n+2)!2an+1+252(n+2)!an+252(n+1)!;nN1an+225.1(n+1)!n11an+225n11(n+1)!=25(n01n!2)e=n01n!n=11an+2=25(e2)<310proof2(e2)<32e<2+34=2.75>etrue

Terms of Service

Privacy Policy

Contact: info@tinkutara.com