Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 203434 by sonukgindia last updated on 19/Jan/24

Answered by witcher3 last updated on 20/Jan/24

=∫((−2sin(2x)sin(3x))/(1+2cos(3x)))dx  =((sin(2x))/3)ln(1+2cos(3x))−(1/6)∫sin(x)cos(x)ln(1+2cos(3x))dx  ln(1+2cos(3x))=ln(1+2cos(x)(2cos^2 (x)−1)−4(1−cos^2 (x))cos(x))  =ln(1+8cos^3 (x)−6cos(x))  cos(x)=u  ∫  =(1/6)∫uln(1+8u^3 −6u)du  1+8u^3 −6u=8Π_(w∣1+8w^3 −6w=0) (u−w)  =(1/6)∫uln(8)+Σ_w uln(u−w)du  ∫uln(u−w)=∫(u−w)ln(u−w)+wln(u−w)du  =(1/2)(u−w)^2 ln(u−w)−(1/4)(u−w)  ((sin(2x))/3)ln(1+2cos(3x))+(1/4)cos^2 (x)ln(2)+(1/6)Σ_(w∣8w^3 −6w+1=0) (cos(x)−w)ln(cos(x)−w)−(1/4)(cos(x)−w)  w can bee expressed withe cardon

=2sin(2x)sin(3x)1+2cos(3x)dx=sin(2x)3ln(1+2cos(3x))16sin(x)cos(x)ln(1+2cos(3x))dxln(1+2cos(3x))=ln(1+2cos(x)(2cos2(x)1)4(1cos2(x))cos(x))=ln(1+8cos3(x)6cos(x))cos(x)=u=16uln(1+8u36u)du1+8u36u=8w1+8w36w=0(uw)=16uln(8)+wuln(uw)duuln(uw)=(uw)ln(uw)+wln(uw)du=12(uw)2ln(uw)14(uw)sin(2x)3ln(1+2cos(3x))+14cos2(x)ln(2)+16w8w36w+1=0(cos(x)w)ln(cos(x)w)14(cos(x)w)wcanbeeexpressedwithecardon

Answered by MathematicalUser2357 last updated on 30/Jan/24

((sin 2x)/3)ln(1+2cos 3x)+(1/4)cos^2 x ln 2+(1/6)Σ_(8w^3 −6w+1=0) ((cos x−w)ln(cos x−w)−(1/4)(cos x−w))+C

sin2x3ln(1+2cos3x)+14cos2xln2+168w36w+1=0((cosxw)ln(cosxw)14(cosxw))+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com