Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 203502 by Frix last updated on 20/Jan/24

ze^z =e  Obviously z=1  Now find at least one solution for z∈C

zez=eObviouslyz=1NowfindatleastonesolutionforzC

Commented by Frix last updated on 22/Jan/24

See question 203570

Seequestion203570

Commented by a.lgnaoui last updated on 22/Jan/24

I just have an idea for   z=a+ib   and to trasforme to( cosx+isinx)  ze^z =e     z=e^(1−z)   a+ib=e^((1−a)−ib)   e^(−ib) =cos b−isin b  a+ib=e^(1−a) ×(cos b−isin b)    a−(cos b)e^(1−a) +i[(b+e^(1−a) (sin b)]   { ((z=a+ib)),((cos be^(1−a) =0     sin be^(1−1) =0)) :}   { ((ze^z −e=[(a−c)),((b=)) :}  z=e^(1−z) =e^((1−a)−ib)       (e^(1−a) /(cos b−isin b))=(a−cos be^(1−a) )+             i(b+e^(1−a) sin b)   { ((e^(1−a) cos b=a−cos be^(1−a) )),((e^(1−a) sin b=b+sin be^(1−a) )) :}     { ((a=2cos be^(1−a) )),((b=2sin be^(1−a) )) :}    (a/b)=(1/(tan b))    a=(b/(tan b))    z=((b+ib)/(tan b))=e^((1−a)−ib) ⇒     { ((((b(1+i))/(tan b×e^(1−a) ))=e^(−ib) )),((=cos b−isin b)) :}     { (((b/(tan be^(1−a) ))=cos b=−sin b=sin (−b))),((b=(𝛑/4))) :}  donc   (((π/4)(1+i))/e^(1−a) )=((√2)/2)(1−i)           e^(1−a) =(π/(2(√2)))     ⇒a=1−ln((π/(2(√2))))       (√(a^2 +b^2  )) (acos b−isin b)      { (((b/( (√(a^2 +b^2 ))))=−(√2))),() :}     ((a/b))^2 +1=4     (a/b)=(√3)     b=a((√3)/3)    z=a+ib      z=[1−ln((𝛑/(2(√2))))]+[((√3)/3)(1−ln(π/(2(√2))))]i             S={1;(1−ln((π/(2(√2)))))+i((√3)/3)(1−ln((π/( 2(√2))))}     It is clear that there is many    roots if we transcorme the[  expressiin in  Argθ=      { ((cos θ=((1−ln(π/2(√2) ))/( (√((1−ln(π/2(√2))^2 +1/3(1−lnπ/2(√2))^2 )))))),((sin θ=(((√3) /3)/( (√((2−ln(π/2(√(2)]^2 )) +1/3(2−lnπ/2(√2) )^2 )))))) :}

Ijusthaveanideaforz=a+ibandtotrasformeto(cosx+isinx)zez=ez=e1za+ib=e(1a)ibeib=cosbisinba+ib=e1a×(cosbisinb)a(cosb)e1a+i[(b+e1a(sinb)]{z=a+ibcosbe1a=0sinbe11=0{zeze=[(acb=z=e1z=e(1a)ibe1acosbisinb=(acosbe1a)+i(b+e1asinb){e1acosb=acosbe1ae1asinb=b+sinbe1a{a=2cosbe1ab=2sinbe1aab=1tanba=btanbz=b+ibtanb=e(1a)ib{b(1+i)tanb×e1a=eib=cosbisinb{btanbe1a=cosb=sinb=sin(b)b=π4doncπ4(1+i)e1a=22(1i)e1a=π22a=1ln(π22)a2+b2(acosbisinb){ba2+b2=2(ab)2+1=4ab=3b=a33z=a+ibz=[1ln(π22)]+[33(1lnπ22)]iS={1;(1ln(π22))+i33(1ln(π22)}Itisclearthatthereismanyrootsifwetranscormethe[expressiininArgθ={cosθ=1ln(π/22)(1ln(π/22)2+1/3(1lnπ/22)2sinθ=3/3(2ln(π/22)]2+1/3(2lnπ/22)2

Answered by a.lgnaoui last updated on 20/Jan/24

ze^z −e=0  lnz+z=1  Solution est donne par graphe    ze^z −e=(z−1)Q(z)  Q(z)=((ze^z −e)/(z−1))    solugiin pour  ((ze^z −e)/(z−1))  est[donne   par graphe

zeze=0lnz+z=1Solutionestdonnepargraphezeze=(z1)Q(z)Q(z)=zezez1solugiinpourzezez1est[donnepargraphe

Commented by Frix last updated on 20/Jan/24

There is only one real solution but there  are ∞ complex solutions.

Thereisonlyonerealsolutionbuttherearecomplexsolutions.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com