Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 203526 by Mastermind last updated on 21/Jan/24

Determine the maximum and minimum of  the function:  f(x,y)=x^4 +4x^2 y^2 −2x^2 +2y^2 −1    Thank you

Determinethemaximumandminimumofthefunction:f(x,y)=x4+4x2y22x2+2y21Thankyou

Answered by aleks041103 last updated on 21/Jan/24

let us see for which c∈R, ∃(x,y):f(x,y)=c  x^2 =a, y^2 =b  ⇒f=a^2 +4ab−2a+2b−1=c  (a^2 −2a−1)+2b(2a+1)=c  ⇒b=((−a^2 +2a+c+1)/(2a+1))=y^2 ≥0  also a=x^2 ≥0  −a^2 +2a+c+1=0⇒a_(1,2) =((−2±(√(8+4c)))/(−2))=1±(√(2+c))  2a+1=0 ⇒ a_3 =−1/2  ⇒a≥0, 2a+1>0    1st case: c<−2 ⇒ −a^2 +2a+1+c<0  ⇒b<0→contradiction    2nd case: c=−2 ⇒ −a^2 +2a+1+c≤0  where for a=1 and b=0  and for a>0, b<0 → contradict    3rd case: −1≥c>−2  ⇒b≥0 for 1−(√(2+c))≤a≤1+(√(2+c))    4th case: c>−1  ⇒b≥0 for 0≤a≤1+(√(2+c))    ⇒ for all c≥−2, ∃(x,y):f(x,y)=c    ⇒min of f(x,y) at  { ((x=±1)),((y=0)) :} with min(f)=−2  ∄max of f(x,y)

letusseeforwhichcR,(x,y):f(x,y)=cx2=a,y2=bf=a2+4ab2a+2b1=c(a22a1)+2b(2a+1)=cb=a2+2a+c+12a+1=y20alsoa=x20a2+2a+c+1=0a1,2=2±8+4c2=1±2+c2a+1=0a3=1/2a0,2a+1>01stcase:c<2a2+2a+1+c<0b<0contradiction2ndcase:c=2a2+2a+1+c0wherefora=1andb=0andfora>0,b<0contradict3rdcase:1c>2b0for12+ca1+2+c4thcase:c>1b0for0a1+2+cforallc2,(x,y):f(x,y)=cminoff(x,y)at{x=±1y=0withmin(f)=2maxoff(x,y)

Answered by deleteduser1 last updated on 21/Jan/24

f(x,y): (x^2 −1)^2 +(2xy)^2 +(y(√2))^2 −2≥−2   (Equality:x=+_− 1,y=0)  No maximum,f(x,y)→∞ as ∣x∣,∣y∣→∞

f(x,y):(x21)2+(2xy)2+(y2)222(Equality:x=+1,y=0)Nomaximum,f(x,y)asx,y∣→

Terms of Service

Privacy Policy

Contact: info@tinkutara.com