All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 203526 by Mastermind last updated on 21/Jan/24
Determinethemaximumandminimumofthefunction:f(x,y)=x4+4x2y2−2x2+2y2−1Thankyou
Answered by aleks041103 last updated on 21/Jan/24
letusseeforwhichc∈R,∃(x,y):f(x,y)=cx2=a,y2=b⇒f=a2+4ab−2a+2b−1=c(a2−2a−1)+2b(2a+1)=c⇒b=−a2+2a+c+12a+1=y2⩾0alsoa=x2⩾0−a2+2a+c+1=0⇒a1,2=−2±8+4c−2=1±2+c2a+1=0⇒a3=−1/2⇒a⩾0,2a+1>01stcase:c<−2⇒−a2+2a+1+c<0⇒b<0→contradiction2ndcase:c=−2⇒−a2+2a+1+c⩽0wherefora=1andb=0andfora>0,b<0→contradict3rdcase:−1⩾c>−2⇒b⩾0for1−2+c⩽a⩽1+2+c4thcase:c>−1⇒b⩾0for0⩽a⩽1+2+c⇒forallc⩾−2,∃(x,y):f(x,y)=c⇒minoff(x,y)at{x=±1y=0withmin(f)=−2∄maxoff(x,y)
Answered by deleteduser1 last updated on 21/Jan/24
f(x,y):(x2−1)2+(2xy)2+(y2)2−2⩾−2(Equality:x=+−1,y=0)Nomaximum,f(x,y)→∞as∣x∣,∣y∣→∞
Terms of Service
Privacy Policy
Contact: info@tinkutara.com