Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 203569 by cherokeesay last updated on 22/Jan/24

Commented by a.lgnaoui last updated on 22/Jan/24

2(a+b+c+d)=360    (a+b+c+d)=180    (a+b)=180−(c+d)        tan (a+b)=−tan (c+d)      ((t1+t2)/(1−t1.t2))=((t3+t4)/(t3t4−1))      t1=(R/(20))    t2=(R/(15))    t3=(R/(12))   t4 =(R/(10))     ⇒   20t1=15t2   =12t3=10t4        t2=(4/3) t1    t4=(6/5)t3     ((7t1)/(3−4(t1)^2 ))=((11t3)/(6(t3)^2 −5))   (t3=(5/3)t1)  ⇒  ((7t1)/(3−4(t1)^2 ))=((11×(5/3)t1)/(6(((25)/9))t1^2 −5))=((55t1)/(50(t1^2 )−15))  7[50(t1)^2 −15]=55(3−4(t1)^2      350(t1^2 )−105=165−220(t1)^2   [350+220](t1)^2 =270     t1=(3/( (√(19))))     ⇒ (R/(20))=(3/( (√(19))))         R=((60)/( (√(19))))=13,764

2(a+b+c+d)=360(a+b+c+d)=180(a+b)=180(c+d)tan(a+b)=tan(c+d)t1+t21t1.t2=t3+t4t3t41t1=R20t2=R15t3=R12t4=R1020t1=15t2=12t3=10t4t2=43t1t4=65t37t134(t1)2=11t36(t3)25(t3=53t1)7t134(t1)2=11×53t16(259)t125=55t150(t12)157[50(t1)215]=55(34(t1)2350(t12)105=165220(t1)2[350+220](t1)2=270t1=319R20=319R=6019=13,764

Commented by a.lgnaoui last updated on 22/Jan/24

Commented by cherokeesay last updated on 22/Jan/24

perfect !  thank you sir.

perfect!thankyousir.

Answered by mr W last updated on 22/Jan/24

tan^(−1) ((10)/R)+tan^(−1) ((12)/R)+tan^(−1) ((15)/R)+tan^(−1) ((20)/R)=π  tan (tan^(−1) ((10)/R)+tan^(−1) ((12)/R))=−tan (tan^(−1) ((15)/R)+tan^(−1) ((20)/R))  ((((10)/R)+((12)/R))/(1−((10)/R)×((12)/R)))=−((((15)/R)+((20)/R))/(1−((15)/R)×((20)/R)))  ((22)/(R^2 −120))=−((35)/(R^2 −300))  R^2 =((22×300+35×120)/(22+35))=((3600)/(19))  ⇒R=((60)/( (√(19))))≈13.765

tan110R+tan112R+tan115R+tan120R=πtan(tan110R+tan112R)=tan(tan115R+tan120R)10R+12R110R×12R=15R+20R115R×20R22R2120=35R2300R2=22×300+35×12022+35=360019R=601913.765

Commented by cherokeesay last updated on 22/Jan/24

So nice !  thank you master !

Sonice!thankyoumaster!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com