Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 203602 by mr W last updated on 22/Jan/24

Answered by mr W last updated on 23/Jan/24

Commented by mr W last updated on 23/Jan/24

make PE//CD  ∠EPD=∠PDC=60°=∠PDE  ⇒ΔPDE is equilateral.  ⇒PE=ED=PD  ((BE)/(BD))=((EP)/(DC))  ((BD−ED)/(BD))=((EP)/(DC))  ((24−PD)/(24))=((PD)/8)  4×PD=24  ⇒PD=6 ✓

makePE//CDEPD=PDC=60°=PDEΔPDEisequilateral.PE=ED=PDBEBD=EPDCBDEDBD=EPDC24PD24=PD84×PD=24PD=6

Answered by deleteduser1 last updated on 22/Jan/24

x=AB=BC=CA  Ptolemy: 8×x+24×x=x(DA)⇒DA=32  Let ∡CBD=θ⇒∠BCD=60−θ  BC^2 =BD^2 +DC^2 −2BD×DCcos(120)  ⇒BC=8(√(13))  ((sin(θ))/8)=((sin(120))/(8(√(13))))⇒sin(θ)=((√(39))/(26))⇒cos(θ)=((7(√(13)))/(26))  ((sin(120−θ))/(24))=((sin(θ))/(DP))⇒DP=((24sin(θ))/(sin(120−θ)))=6  [sin(120−θ)=((8(√(39)))/(52))]

x=AB=BC=CAPtolemy:8×x+24×x=x(DA)DA=32LetCBD=θBCD=60θBC2=BD2+DC22BD×DCcos(120)BC=813sin(θ)8=sin(120)813sin(θ)=3926cos(θ)=71326sin(120θ)24=sin(θ)DPDP=24sin(θ)sin(120θ)=6[sin(120θ)=83952]

Commented by mr W last updated on 23/Jan/24

thanks alot!

thanksalot!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com