Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 203615 by muneer0o0 last updated on 23/Jan/24

I = ∫_0 ^(π/2) (x^2 /(1+sin^2  (x)))dx

I=0π/2x21+sin2(x)dx

Answered by witcher3 last updated on 25/Jan/24

I=Re∫_0 ^(π/2) (x^2 /(1+isin(x)))dx=Re(B)  B=∫_0 ^(π/2) ((2x^2 )/(2+e^(ix) −e^(−ix) ))=∫_0 ^(π/2) ((2x^2 e^(ix) )/((e^(2ix) +2e^(ix) −1)))dx=∫_0 ^(π/2) ((2x^2 e^(ix) )/((e^(ix) +1+(√2))(e^(ix) +1−(√2))))dx  =2∫_0 ^(π/2) x^2 [.(((−1−(√2))/(−2(√2)))).(1/((e^(ix) +1+(√2))))+((−1+(√2))/(2(√2)(e^(ix) +1−(√2))))]dx  =(1/( (√2)))∫_0 ^(π/2) (x^2 /((e^(ix) /(1+(√2)))+1))dx+(((√2)−1)/( (√2))).∫_0 ^(π/2) ((x^2 e^(−ix) )/(1+(1−(√2))e^(−ix) ))dx  =(1/( (√2)))∫_0 ^(π/2) Σ(((−1)^k )/((1+(√2))^k )).x^2 e^(ikx) dx+(1/( (√2)))∫_0 ^(π/2) ((√2)−1)^(k+1) e^(−i(k+1)x) x^2 dx  =(1/( (√2)))∫_0 ^(π/2) Σ_(k≥0) x^2 (1−(√2))^k x^2 e^(ikx) dx+(1/( (√2)))∫_0 ^(π/2) ((√2)−1)^(k+1) e^(−i(k+1)x) x^2 dx  we want Re (B);∫x^2 e^(ikx) dxor ∫x^2 e^(−ikx) dx didnt change realart⇒  B=(1/( (√2)))((π^3 /(24)))+(1/( (√2)))Σ_(k≥0) (1−(√2))^(k+1) x^2 e^(−i(k+1)x) +((√2)−1)^(k+1) e  =(1/( (√2))).(π^3 /(24))+(2/( (√2))) Σ_(k≥0) ((√2)−1)^(2k+2) e^(−i(2k+2)x) x^2 dx  =(1/( (√2))).(π^3 /(24))+(√2).Σ((√2)−1)^(2k+2) ∫_0 ^π e^(i(k+1)y) .(y^2 /8)dy  =(π^3 /( 24(√2)))+(1/(2(√2)))Σ((√2)−1)^(2k+2) {.[((y^2 e^(i(k+1)y) )/(i(k+1)))]_0 ^π −(2/(i(k+1)))∫_0 ^π ye^(i(k+1)y) dy  =(π^3 /( (√(242))))+(1/( (√2)))Σ((√2)−1)^(2k+2) .[((ye^(i(k+1)y) )/((k+1)^2 ))]_0 ^π   =(π^3 /( 24(√2)))+(1/( (√2)))Σ(((3−2(√2))^(k+1) π(−1)^(k+1) )/((k+1)^2 ))  =(π^3 /( 24(√2)))+(π/( (√2)))Li_2 (2(√2)−3);Li_s (z)=Σ_(k≥0) (z^(k+1) /((k+1)^s )),∀∣z∣<1  ∫_0 ^(π/2) (x^2 /(1+sin^2 (x)))=(π^3 /(24(√2)))+(π/( (√2)))Li_2 (2(√2)−3)

I=Re0π2x21+isin(x)dx=Re(B)B=0π22x22+eixeix=0π22x2eix(e2ix+2eix1)dx=0π22x2eix(eix+1+2)(eix+12)dx=20π2x2[.(1222).1(eix+1+2)+1+222(eix+12)]dx=120π2x2eix1+2+1dx+212.0π2x2eix1+(12)eixdx=120π2Σ(1)k(1+2)k.x2eikxdx+120π2(21)k+1ei(k+1)xx2dx=120π2k0x2(12)kx2eikxdx+120π2(21)k+1ei(k+1)xx2dxwewantRe(B);x2eikxdxorx2eikxdxdidntchangerealartB=12(π324)+12k0(12)k+1x2ei(k+1)x+(21)k+1e=12.π324+22k0(21)2k+2ei(2k+2)xx2dx=12.π324+2.Σ(21)2k+20πei(k+1)y.y28dy=π3242+122Σ(21)2k+2{.[y2ei(k+1)yi(k+1)]0π2i(k+1)0πyei(k+1)ydy=π3242+12Σ(21)2k+2.[yei(k+1)y(k+1)2]0π=π3242+12Σ(322)k+1π(1)k+1(k+1)2=π3242+π2Li2(223);Lis(z)=k0zk+1(k+1)s,z∣<10π2x21+sin2(x)=π3242+π2Li2(223)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com