Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 203650 by Davidtim last updated on 24/Jan/24

lim_(x→0) (((2^x +3^x )/2))^(2/x) =?

limx0(2x+3x2)2x=?

Answered by witcher3 last updated on 25/Jan/24

   (2/x)ln(((2^x +3^x )/2))  2^x =e^(xln(2)) =1+xln(2)+o(x)  3^x =e^(xln(3)) =1+xln(3)+o(x)  2^x +3^x =2+xln(6)+o(x)  (2/x)ln(((2^x +3^x )/2))=(2/x)ln(1+(x/2)ln(6)+o(x))=(2/x)((x/2)ln(6))+o(1)  →ln(6)  lim_(x→0) (((2^x +3^x )/2))^(2/x) =e^(ln(6)) =6

2xln(2x+3x2)2x=exln(2)=1+xln(2)+o(x)3x=exln(3)=1+xln(3)+o(x)2x+3x=2+xln(6)+o(x)2xln(2x+3x2)=2xln(1+x2ln(6)+o(x))=2x(x2ln(6))+o(1)ln(6)limx0(2x+3x2)2x=eln(6)=6

Answered by Calculusboy last updated on 26/Jan/24

Solution: by sub directly,we get (1^∞ )  let y=(((2^x +3^x )/2))^(2/x) (apply log to both sides)  logy=lim_(x→0) log(((2^x +3^x )/2))^(2/x)   ⇒  logy=lim_(x→0) (2/x)log(((2^x +3^x )/2))  logy=lim_(x→0) ((2(d/dx)[log(((2^x +3^x )/2))])/((d/dx)(x)))   ⇒  logy=lim_(x→0) ((2{(((1/2)[2^x In(2)+3^x In(3)])/((((2^x +3^x )/2))))})/1)  logy=lim_(x→0) ((2^x In(2)+3^x In(3))/((2^x +3^x )/2))   ⇒  logy=2∙((lim_(x→0) [2^x In(2)+3^x In(3)])/(lim_(x→0) (2^x +3^x )))  logy=2∙(([In(2)+In(3)])/((1+1)))  logy=In(6)  y=e^(In(6))   y=6  ∴lim_(x→0) (((2^x +3^x )/2))^(2/x) =6

Solution:bysubdirectly,weget(1)lety=(2x+3x2)2x(applylogtobothsides)logy=limlogx0(2x+3x2)2xlogy=limx02xlog(2x+3x2)logy=limx02ddx[log(2x+3x2)]ddx(x)logy=limx02{12[2xIn(2)+3xIn(3)](2x+3x2)}1logy=limx02xIn(2)+3xIn(3)2x+3x2logy=2limx0[2xIn(2)+3xIn(3)]limx0(2x+3x)logy=2[In(2)+In(3)](1+1)logy=In(6)y=eIn(6)y=6limx0(2x+3x2)2x=6

Terms of Service

Privacy Policy

Contact: info@tinkutara.com