Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 203694 by Numsey last updated on 26/Jan/24

Answered by Calculusboy last updated on 26/Jan/24

Solution: by sub directly,we get (0/0)(indeterminant)  let 𝚫=lim_(xβ†’0) (((1+x)^5 )/x^2 )βˆ’lim_(xβ†’0) (e^(5x) /x^2 )+lim_(xβ†’0) ((sin(x^2 ))/x^2 )  𝚫=lim_(xβ†’0) ((5(1+x)^4 )/(2x))βˆ’lim_(xβ†’0) ((5e^(5x) )/(2x))+1  𝚫=lim_(xβ†’0) ((20(1+x)^3 )/2)βˆ’lim_(xβ†’0) ((25e^(5x) )/2)+1  𝚫=10lim_(xβ†’0) (1+x)^3 βˆ’((25)/2)lim_(xβ†’0) e^(5x) +1  𝚫=10βˆ’((25)/2)+1  𝚫=βˆ’(3/2)=βˆ’1.5  ∴lim_(xβ†’0) (((1+x)^5 βˆ’e^(5x) +sinx^2 )/x^2 )=βˆ’(3/2)=βˆ’1.5

Solution:bysubdirectly,weget00(indeterminant)letΞ”=limxβ†’0(1+x)5x2βˆ’limxβ†’0e5xx2+limxβ†’0sin(x2)x2Ξ”=limxβ†’05(1+x)42xβˆ’limxβ†’05e5x2x+1Ξ”=limxβ†’020(1+x)32βˆ’limxβ†’025e5x2+1Ξ”=10limxβ†’0(1+x)3βˆ’252limexβ†’05x+1Ξ”=10βˆ’252+1Ξ”=βˆ’32=βˆ’1.5∴limxβ†’0(1+x)5βˆ’e5x+sinx2x2=βˆ’32=βˆ’1.5

Terms of Service

Privacy Policy

Contact: info@tinkutara.com