All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 203774 by Calculusboy last updated on 27/Jan/24
determinewhethertheseriesisconvergentordivergentâân=1n4n2+1
Answered by witcher3 last updated on 27/Jan/24
n4n2+1⊞n1+4n2+4n=n2n+1=3n3(2n+1)>2n+13(2n+1)âÎŁn4n2+1>ÎŁ13Dv
Answered by Mathspace last updated on 30/Jan/24
n4n2+1=n2n1+14n2=121+14n2wehave(1+x)Îą=1+Îąx+Îą(Îąâ1)2x2+o(x2)â11+x=(1+x)â12=1âx2+12(â12)(â12â1)x2+o(x2)=1âx2â14Ăâ32x2+o(x2)=1âx2+38x2+o(x2)soun=121+14n2=12â116n2+316Ă116n4+o(1n4)estundev.assymtotiquedeunonalimun=12â 0âÎŁunestdivergente.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com