All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 203807 by aba last updated on 28/Jan/24
proof:∫01f2(t)dt=0⇒f=0
Answered by JDamian last updated on 28/Jan/24
f2(t)⩾0∀t
Answered by witcher3 last updated on 29/Jan/24
fiscontinuswecanf(x)={1isx∈IQ0ifx∉IQ∫01f2(x)dx=∫x∈IQ∩[0,1]1dx=μ[[0,1]∩Q]=0orf≠0iffiscontinusin[0,1]suppsef≠0⇒∃a∈]0,1[∣f(a)≠0⇒∃ϵ>0such∀x∈‘‘I=[a−ϵ,a+ϵ]f(x)≠0⇒∀x∈If2(x)>0sincefiscontinusisboundedincompactinterval⇒y∈Isuchf2(x)⩾f2(y)>00⩾∫01f2(x)dx⩾∫If2(x)dx⩾∫If2(y)=f2(y).(2ϵ)⇒f2(y).2ϵ=0⇒f(y)=0absurd⇒f=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com