Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 203836 by patrice last updated on 29/Jan/24

Answered by Frix last updated on 30/Jan/24

In 3 steps:  1. t=x^2 −1  2. u=((5t+(√(25t^2 +11)))/( 11))  3. v=((√(1+u))/( (√(1−u)))) ⇒  (4/5) ∫_((√6)/( (√5))) ^∞  ((v^2 (3v^4 −5v^2 +3))/((v^4 −1)^2 ))dv=  =[((v(5v^2 −6))/(5(v^4 −1)))+((ln ((v+1)/(v−1)))/(20))+((11tan^(−1)  v)/(10))]_((√6)/( (√5))) ^∞ =  =((11π)/(20))−((ln ((√6)+(√5)))/(10))−((11tan^(−1)  ((√6)/( (√5))))/(10))

In3steps:1.t=x212.u=5t+25t2+11113.v=1+u1u4565v2(3v45v2+3)(v41)2dv==[v(5v26)5(v41)+lnv+1v120+11tan1v10]65==11π20ln(6+5)1011tan16510

Commented by patrice last updated on 30/Jan/24

je ne sais pas bien merci

Answered by Sutrisno last updated on 30/Jan/24

  =∫_0 ^(√2) ((√(6−(5x^2 −6)^2 ))/( (√5)))dx  =∫_0 ^(√2) ((√(12−5x^2 ))/( (√5)))dx  misal (√5)x=(√(12))sinθ→(√5)dx=(√(12))cosθdθ  =∫((√(12−12sin^2 θ))/( (√5))).(((√(12))cosθdθ)/( (√5)))  =((12)/5)∫cos^2 θdθ  =((12)/5)∫((cos2θ+1)/2)dθ  =(6/5)((1/2)sin2θ+θ)  =(6/5)(sinθcosθ+θ)  =(6/5)((((√5)x)/( (√(12)))).((√(12−5x^2 ))/( (√(12))))+sin^(−1) ((((√5)x)/( (√(12))))))∣_0 ^(√2)   =(6/5)(((√(10))/( (√(12)))).((√2)/( (√(12))))+sin^(−1) (((√(10))/( (√(12))))))  =(6/5)(((√5)/( 6))+sin^(−1) (((√(30))/( 6))))

=026(5x26)25dx=02125x25dxmisal5x=12sinθ5dx=12cosθdθ=1212sin2θ5.12cosθdθ5=125cos2θdθ=125cos2θ+12dθ=65(12sin2θ+θ)=65(sinθcosθ+θ)=65(5x12.125x212+sin1(5x12))20=65(1012.212+sin1(1012))=65(56+sin1(306))

Commented by Frix last updated on 30/Jan/24

Wrong because  (√(25x^4 −50x^2 +36))≠5x^2 −6  And we see it′s not a typo because of the  upper border (√2) where the given function  equals zero.

Wrongbecause25x450x2+365x26Andweseeitsnotatypobecauseoftheupperborder2wherethegivenfunctionequalszero.

Commented by Frix last updated on 30/Jan/24

∫_0 ^b ((√(6−(√(25x^4 −60x^2 +36))))/( (√5)))dx=  =∫_0 ^b ((√(6−∣5x^2 −6∣))/( (√5)))dx=  =∫_0 ^((√(30))/5) xdx+∫_((√(30))/( 5)) ^b ((√(12−5x^2 ))/( (√5)))dx=  =[(x^2 /2)]_0 ^((√(30))/5) +[((x(√(12−5x^2 )))/(2(√5)))+((6sin^(−1)  (((√(15))x)/6))/5)]_((√(30))/5) ^b   This gives:  b=(√2)  ((√5)/5)−((3π)/(10))+((6sin^(−1)  ((√(30))/6))/5)  b=((2(√(15)))/5) [zero of the function]  ((3π)/(10))

b0625x460x2+365dx==b065x265dx==3050xdx+b305125x25dx==[x22]0305+[x125x225+6sin115x65]305bThisgives:b=2553π10+6sin13065b=2155[zeroofthefunction]3π10

Terms of Service

Privacy Policy

Contact: info@tinkutara.com