Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 20386 by tammi last updated on 26/Aug/17

∫(√(1−a^2 x^2 dx))

1a2x2dx

Answered by $@ty@m last updated on 26/Aug/17

Let x=((sinθ)/a)  ⇒dx=(1/a)cosθdθ  ⇒I=(1/a)∫(√(1−sin^2 θ))cosθdθ  =(1/a)∫cos^2 θdθ  =(1/(2a))∫(1+cos2θ)dθ  =(1/(2a))[θ+((sin2θ)/2)]+C  =(1/(2a))[sin^(−1) ax+ax(√(1−a^2 x^2 ))]+C

Letx=sinθadx=1acosθdθI=1a1sin2θcosθdθ=1acos2θdθ=12a(1+cos2θ)dθ=12a[θ+sin2θ2]+C=12a[sin1ax+ax1a2x2]+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com