Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 203881 by mr W last updated on 31/Jan/24

Commented by mr W last updated on 31/Jan/24

find the hatched area between curve  and its tangent line.

findthehatchedareabetweencurveanditstangentline.

Answered by Frix last updated on 01/Feb/24

Curve: f(x)=x^4 +ax^3 +bx^2 +cx+d  Tangent: g(x)=px+q  f(3)=g(3)  f(9)=g(9)  f′(3)=g′(3)  f′(9)=g′(9)  ⇒  f(x)=x^4 −24x^3 +198x^2 +cx+d  g(x)=648x−729+cx+d  ∫_3 ^9 f(x)−g(x)dx=((1296)/5)

Curve:f(x)=x4+ax3+bx2+cx+dTangent:g(x)=px+qf(3)=g(3)f(9)=g(9)f(3)=g(3)f(9)=g(9)f(x)=x424x3+198x2+cx+dg(x)=648x729+cx+d93f(x)g(x)dx=12965

Commented by mr W last updated on 01/Feb/24

������

Answered by mr W last updated on 01/Feb/24

Commented by mr W last updated on 01/Feb/24

curve: f(x)=x^4 +ax^3 +bx^2 +cx+d  tangent: g(x)=hx+k  f(x)−g(x) is also a quatric equation  which has two double real roots:   x=p=3, x=q=9  ⇒f(x)−g(x)=(x−p)^2 (x−q)^2   A=∫_p ^q [f(x)−g(x)]dx     =∫_p ^q (x−p)^2 (x−q)^2 dx     =∫_0 ^(q−p) u^2 (u−(q−p))^2 du  with u=x−q     =∫_0 ^s u^2 (u−s)^2 du  with s=q−p     =∫_0 ^s (u^4 −2su^3 +s^2 u^2 )du     =(s^5 /5)−(s^5 /2)+(s^5 /3)     =(s^5 /(30))  with p=3, q=9  ⇒s=9−3=6  ⇒A=(6^5 /(30))=((1296)/5) ✓

curve:f(x)=x4+ax3+bx2+cx+dtangent:g(x)=hx+kf(x)g(x)isalsoaquatricequationwhichhastwodoublerealroots:x=p=3,x=q=9f(x)g(x)=(xp)2(xq)2A=pq[f(x)g(x)]dx=pq(xp)2(xq)2dx=0qpu2(u(qp))2duwithu=xq=0su2(us)2duwiths=qp=0s(u42su3+s2u2)du=s55s52+s53=s530withp=3,q=9s=93=6A=6530=12965

Commented by Frix last updated on 01/Feb/24

Nice!

Nice!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com