Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 203910 by Davidtim last updated on 01/Feb/24

if   y=(1−x)(2−x)(3−x)∙∙∙(n−x)  y^′ =?

ify=(1x)(2x)(3x)(nx)y=?

Answered by mr W last updated on 01/Feb/24

y=Π_(k=1) ^n (k−x)  ln y=Σ_(k=1) ^n ln (k−x)  ((y′)/y)=−Σ_(k=1) ^n (1/(k−x))  y′=−Π_(k=1) ^n (k−x)Σ_(k=1) ^n (1/(k−x))

y=nk=1(kx)lny=nk=1ln(kx)yy=nk=11kxy=nk=1(kx)nk=11kx

Answered by witcher3 last updated on 02/Feb/24

f(x)=Π_(i=1) ^n p_i   f′(x)=Σ_(i=1) ^n p_i ′.Π_(l=1#i) ^n p_l ;∀n≥2  proof n=2  f(x)=p_1 .p_2 ⇒f′(x)=p_1 ′.p_2 +p_2 ′.p_1 =Σ_(i=1) ^n (p_i )Π_(l=1≠i) ^2 p_l   suppose ∀n∈N  f′(x)=Σp_i ′Πp_(l  ) true  shows for f(x)=p_1 ....p_(n+1)   f′(x)=Σ_(l=1) ^(n +1) p_l ′Π_(i=1#l) ^(n+1) p_i   f(x)=(p_(n+1) ).(p_1 ....p_n )⇒f′(x)=p_(n+1) ′.(p_1 ...p_n )  +p_(n+1) .Σ_(k=l) ^n p_k ′.Π_(l=1#k) ^n p_l   =Σ_(k=n+1) ^(n+1) p_k ′.Π_(l=1#k) ^(n+1) p_k +Σ_(k=1) ^n p′_k Π_(l=1#k) ^(n+1) p_l   =Σ_(k=1) ^(n+1) p′_k Π_(l=1≠k) ^(n+1) p_l   prooved  in our exempl p_i =(i−x)⇒p′_i =−1  y′=Σ_(k=1) ^n (−1)Π_(l=1≠k) ^n (l−x)=−Σ_(k=1) ^n (1/(k−x))Π_(l=1) ^n (l−x)  =−yΣ_(k=1) ^n (1/(k−x))

f(x)=ni=1piYou can't use 'macro parameter character #' in math modeproofn=2f(x)=p1.p2f(x)=p1.p2+p2.p1=ni=1(pi)2l=1iplsupposenNf(x)=ΣpiΠpltrueshowsforf(x)=p1....pn+1You can't use 'macro parameter character #' in math modef(x)=(pn+1).(p1....pn)f(x)=pn+1.(p1...pn)You can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math mode=n+1k=1pkn+1l=1kplproovedinourexemplpi=(ix)pi=1y=nk=1(1)nl=1k(lx)=nk=11kxnl=1(lx)=ynk=11kx

Commented by York12 last updated on 02/Feb/24

GJ

GJ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com