Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 203919 by Samuel12 last updated on 02/Feb/24

Answered by Mathspace last updated on 02/Feb/24

1=e^(2ikπ)   let z=re^(iθ)   z^5 =1 ⇔r^5 e^(i5θ) =e^(i2kπ) ⇔  r=1 and θ=((2kπ)/5)  so the roots are z_k =e^(i((2kπ)/5))   and k∈[[0,4]]  z_0 =1   , z_1 =e^((i2π)/5)   z_2 =e^(i((4π)/5)) =−e^(−((iπ)/5))      z_3 =e^(i((6π)/5))  =−e^((iπ)/5)   z_4 =e^(i((8π)/5)) =e^(i((10π−2π)/5)) =e^(−i((2π)/5))   e^((iπ)/5) =cos((π/5))+isin((π/5))  and cos((π/5))=((1+(√5))/4) .....

1=e2ikπletz=reiθz5=1r5ei5θ=ei2kπr=1andθ=2kπ5sotherootsarezk=ei2kπ5andk[[0,4]]z0=1,z1=ei2π5z2=ei4π5=eiπ5z3=ei6π5=eiπ5z4=ei8π5=ei10π2π5=ei2π5eiπ5=cos(π5)+isin(π5)andcos(π5)=1+54.....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com