Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 204055 by hardmath last updated on 05/Feb/24

y = (2/3) arctg (x^4 )  find:  y^′  = ?

y=23arctg(x4)find:y=?

Answered by deleteduser1 last updated on 05/Feb/24

y^′ =(2/3)[(d/dx)tan^(−1) (x^4 )]  z=tan^(−1) (x^4 )⇒p=tan(z)=x^4   (dp/dz)=(d/dz)[sin(z){cos(z)}^(−1) ]=1+((sin^2 (z))/(cos^2 (z)))=1+tan^2 z  (dp/dx)=4x^3 ⇒(dz/dx)=(dz/dp)×(dp/dx)  ⇒y^′ =[1/(1+tan^2 (tan^(−1) (x^4 )))]×4x^3 =((8x^3 )/(3+3x^8 ))

y=23[ddxtan1(x4)]z=tan1(x4)p=tan(z)=x4dpdz=ddz[sin(z){cos(z)}1]=1+sin2(z)cos2(z)=1+tan2zdpdx=4x3dzdx=dzdp×dpdxy=[1/(1+tan2(tan1(x4)))]×4x3=8x33+3x8

Answered by Mathspace last updated on 06/Feb/24

y^′ =(2/3)×(((x^4 )^′ )/(1+(x^4 )^2 ))=(2/3)×((4x^3 )/(1+x^8 ))  =(8/3)×(x^3 /(1+x^8 ))

y=23×(x4)1+(x4)2=23×4x31+x8=83×x31+x8

Terms of Service

Privacy Policy

Contact: info@tinkutara.com