Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 204062 by BaliramKumar last updated on 05/Feb/24

I.       A(−5, −1); B(3, −5); C(5, 2)      ar(△ABC) = ?  II.     A(5, 3); B(2, 5); C(−5, 3); D(−4, −3)       ar(□ABCD) = ?  shortest solution

I.A(5,1);B(3,5);C(5,2)ar(ABC)=?II.A(5,3);B(2,5);C(5,3);D(4,3)ar(ABCD)=?shortestsolution

Answered by mr W last updated on 05/Feb/24

I.  A=∣(1/2) determinant (((3−(−5)),(−5−(−1))),((5−(−5)),(2−(−1))))∣   =∣(1/2) determinant ((8,(−4)),((10),3))∣  =((24+40)/2)=32  II.  A=∣(1/2) determinant (((−3),2),((−10),0))∣+∣(1/2) determinant (((−10),0),((−9),(−6)))∣     =((20)/2)+((60)/2)=40

I.A=∣12|3(5)5(1)5(5)2(1)|=∣12|84103|=24+402=32II.A=∣12|32100|+12|10096|=202+602=40

Commented by BaliramKumar last updated on 05/Feb/24

any other solution

anyothersolution

Commented by mr W last updated on 05/Feb/24

surely there are other methods.  but this is the shortest solution  i think.

surelythereareothermethods.butthisistheshortestsolutionithink.

Answered by deleteduser1 last updated on 05/Feb/24

AB=(√(80));BC=(√(53));AC=(√(109))  [ABC]=(√((((√(80))+(√(53))+(√(109)))((√(80))+(√(53))−(√(109)((√(80))+(√(109))−(√(53)))((√(109))+(√(53))−(√(80))))))/(16)))  =(√(((24+2(√(80×53)))(−24+2(√(53×80))))/(16)))=(√((4×53×80−24^2 )/(16)))  =32

AB=80;BC=53;AC=109[ABC]=(80+53+109)(80+53109)(80+10953)(109+5380)16=(24+280×53)(24+253×80)16=4×53×8024216=32

Answered by deleteduser1 last updated on 05/Feb/24

Translate any vertex say C(5,2)→C(0,0)  ⇒A(−5,−1)→A(−10,−3)∧B(3,−5)→B(−2,−7)  ⇒[ABC]=∣(1/2) determinant (((−10),(−2)),((−3),(−7)))∣=((64)/2)=32

TranslateanyvertexsayC(5,2)C(0,0)A(5,1)A(10,3)B(3,5)B(2,7)[ABC]=∣12|10237|∣=642=32

Answered by deleteduser1 last updated on 05/Feb/24

Let C(−5,3)→(0,0);[ABCD]=[ABD]+[BCD]  ⇒A(5,3)→A(10,0);B(2,5)→B(7,2);D→(1,−6)  ⇒[BCD]=∣(1/2) determinant ((7,1),(2,(−6)))∣=22  Let A→(0,0)⇒B→(−3,2);D→(−9,−6)  ⇒[ABD]=∣(1/2) determinant (((−3),(−9)),(2,(−6)))∣=18⇒[ABCD]=40

LetC(5,3)(0,0);[ABCD]=[ABD]+[BCD]A(5,3)A(10,0);B(2,5)B(7,2);D(1,6)[BCD]=∣12|7126|∣=22LetA(0,0)B(3,2);D(9,6)[ABD]=∣12|3926|∣=18[ABCD]=40

Terms of Service

Privacy Policy

Contact: info@tinkutara.com