Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 204249 by universe last updated on 10/Feb/24

Commented by Frix last updated on 10/Feb/24

P(x)=((5x^7 )/(16))−((21x^5 )/(16))+((35x^3 )/(16))−((35x)/(16))  Q(x)=((5x^3 )/(16))+((5x^2 )/4)+((29x)/(16))+1  R(x)=((5x^3 )/(16))−((5x^2 )/4)+((29x)/(16))−1    P(x)=ax^7 +bx^6 +cx^5 +dx^4 +ex^3 +fx^2 +gx+h  (x−1)^4 ∣(P(x)+1)∧(x+1)^4 ∣(P(x)−1)  ⇒  35a+20b+10c+4d+e=0  84a+45b+20c+6d−f=0  70a+36b+15c+4d+g=0  20a+10b+4c+d−h=1  35a−20b+10c−4d+e=0  84a−45b+20c−6d+f=0  70a−36b+15c−4d+g=0  20a−10b+4c−d+h=1

P(x)=5x71621x516+35x31635x16Q(x)=5x316+5x24+29x16+1R(x)=5x3165x24+29x161P(x)=ax7+bx6+cx5+dx4+ex3+fx2+gx+h(x1)4(P(x)+1)(x+1)4(P(x)1)35a+20b+10c+4d+e=084a+45b+20c+6df=070a+36b+15c+4d+g=020a+10b+4c+dh=135a20b+10c4d+e=084a45b+20c6d+f=070a36b+15c4d+g=020a10b+4cd+h=1

Answered by witcher3 last updated on 10/Feb/24

⇒p′(x)=Q′(x)(x−1)^4 +4(x−1)^3 Q(x)  =(x−1)^3 (R(x))  ⇒p′(1)=0⇒1 root of multiplicity  b≥3  sam p′(−1)=0 root of multiplicity a≥3  sinc  deg p′(x) =6⇒ card(a∈C∣p′(x)=0)=6  ⇒a=b=3  p′(x)=a(x−1)^3 (x+1)^3 =a(x^6 −3x^4 +3x^2 −1)  p(x)=(a/7)x^7 −((3a)/5)x^5 +ax^3 −ax+b  p(1)=−1,p(−1);find a and b

p(x)=Q(x)(x1)4+4(x1)3Q(x)=(x1)3(R(x))p(1)=01rootofmultiplicityb3samp(1)=0rootofmultiplicitya3sincdegp(x)=6card(aCp(x)=0)=6a=b=3p(x)=a(x1)3(x+1)3=a(x63x4+3x21)p(x)=a7x73a5x5+ax3ax+bp(1)=1,p(1);findaandb

Answered by mr W last updated on 10/Feb/24

P(x)=k(x^3 +ax^2 +bx+c)(x−1)^4 −1  Q(x)=k(x^3 +ux^2 +vx+w)(x+1)^4 +1  (x^3 +ax^2 +bx+c)(x−1)^4 =(x^3 +ux^2 +vx+w)(x+1)^4 +(2/k)  (x^3 +ax^2 +bx+c)(x^4 −4x^3 +6x^2 −4x+1)=(x^3 +ux^2 +vx+w)(x^4 +4x^3 +6x^2 +4x+1)+(2/k)  x^6 : −4+a=4+u  ⇒ u=a−8  x^5 : 6−4a+b=6+4u+v  ⇒ −4a+b=4u+v  ⇒ v=−8a+b+32  x^4 : −4+6a−4b+c=4+6u+4v+w  ⇒ 6a−4b+c=8+6u+4v+w  ⇒ w=32a−8b+c−88  x^3 : 1−4a+6b−4c=1+4u+6v+4w  ⇒ −2a+3b−2c=2u+3v+2w  ⇒ 11a−4b+c=24   ...(i)  x^2 : a−4b+6c=u+4v+6w  ⇒ 20a−5b=51   ...(ii)  x: b−4c=v+4w  ⇒ 15a−4b+c=40   ...(iii)  (iii)−(i):  4a=16 ⇒a=4  20×4−5b=51 ⇒b=((29)/5)  11×4−4×((29)/5)+c=24 ⇒c=((16)/5)  const: c=w+(2/k)   ⇒c=32a−8b+c−88+(2/k)  ⇒k=(1/(44−16a+4b))=(1/(44−16×4+4×((29)/5)))=(5/(16))  ⇒P(x)=(1/(16))(5x^3 +20x^2 +29x+16)(x−1)^4 −1  or  u=4−8=−4  v=−8×4+((29)/5)+32=((29)/5)  w=32×4−8×((29)/5)+((16)/5)−88=−((16)/5)  ⇒P(x)=(1/(16))(5x^3 −20x^2 +29x−16)(x+1)^4 +1

P(x)=k(x3+ax2+bx+c)(x1)41Q(x)=k(x3+ux2+vx+w)(x+1)4+1(x3+ax2+bx+c)(x1)4=(x3+ux2+vx+w)(x+1)4+2k(x3+ax2+bx+c)(x44x3+6x24x+1)=(x3+ux2+vx+w)(x4+4x3+6x2+4x+1)+2kx6:4+a=4+uu=a8x5:64a+b=6+4u+v4a+b=4u+vv=8a+b+32x4:4+6a4b+c=4+6u+4v+w6a4b+c=8+6u+4v+ww=32a8b+c88x3:14a+6b4c=1+4u+6v+4w2a+3b2c=2u+3v+2w11a4b+c=24...(i)x2:a4b+6c=u+4v+6w20a5b=51...(ii)x:b4c=v+4w15a4b+c=40...(iii)(iii)(i):4a=16a=420×45b=51b=29511×44×295+c=24c=165const:c=w+2kc=32a8b+c88+2kk=14416a+4b=14416×4+4×295=516P(x)=116(5x3+20x2+29x+16)(x1)41oru=48=4v=8×4+295+32=295w=32×48×295+16588=165P(x)=116(5x320x2+29x16)(x+1)4+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com