All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 204249 by universe last updated on 10/Feb/24
Commented by Frix last updated on 10/Feb/24
P(x)=5x716−21x516+35x316−35x16Q(x)=5x316+5x24+29x16+1R(x)=5x316−5x24+29x16−1P(x)=ax7+bx6+cx5+dx4+ex3+fx2+gx+h(x−1)4∣(P(x)+1)∧(x+1)4∣(P(x)−1)⇒35a+20b+10c+4d+e=084a+45b+20c+6d−f=070a+36b+15c+4d+g=020a+10b+4c+d−h=135a−20b+10c−4d+e=084a−45b+20c−6d+f=070a−36b+15c−4d+g=020a−10b+4c−d+h=1
Answered by witcher3 last updated on 10/Feb/24
⇒p′(x)=Q′(x)(x−1)4+4(x−1)3Q(x)=(x−1)3(R(x))⇒p′(1)=0⇒1rootofmultiplicityb⩾3samp′(−1)=0rootofmultiplicitya⩾3sincdegp′(x)=6⇒card(a∈C∣p′(x)=0)=6⇒a=b=3p′(x)=a(x−1)3(x+1)3=a(x6−3x4+3x2−1)p(x)=a7x7−3a5x5+ax3−ax+bp(1)=−1,p(−1);findaandb
Answered by mr W last updated on 10/Feb/24
P(x)=k(x3+ax2+bx+c)(x−1)4−1Q(x)=k(x3+ux2+vx+w)(x+1)4+1(x3+ax2+bx+c)(x−1)4=(x3+ux2+vx+w)(x+1)4+2k(x3+ax2+bx+c)(x4−4x3+6x2−4x+1)=(x3+ux2+vx+w)(x4+4x3+6x2+4x+1)+2kx6:−4+a=4+u⇒u=a−8x5:6−4a+b=6+4u+v⇒−4a+b=4u+v⇒v=−8a+b+32x4:−4+6a−4b+c=4+6u+4v+w⇒6a−4b+c=8+6u+4v+w⇒w=32a−8b+c−88x3:1−4a+6b−4c=1+4u+6v+4w⇒−2a+3b−2c=2u+3v+2w⇒11a−4b+c=24...(i)x2:a−4b+6c=u+4v+6w⇒20a−5b=51...(ii)x:b−4c=v+4w⇒15a−4b+c=40...(iii)(iii)−(i):4a=16⇒a=420×4−5b=51⇒b=29511×4−4×295+c=24⇒c=165const:c=w+2k⇒c=32a−8b+c−88+2k⇒k=144−16a+4b=144−16×4+4×295=516⇒P(x)=116(5x3+20x2+29x+16)(x−1)4−1oru=4−8=−4v=−8×4+295+32=295w=32×4−8×295+165−88=−165⇒P(x)=116(5x3−20x2+29x−16)(x+1)4+1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com