All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 204270 by universe last updated on 10/Feb/24
Answered by witcher3 last updated on 10/Feb/24
(1)witherecursionWecaneaslyproovthatan>0an+1=f(an);f(x)=ln(1+x)increasefunctionan>0⇒an+1>f(0)=0f(x)=ln(1+x);f″(x)=−1(1+x)2<0conncavefunctiontangentinzeroy=f′(0)(x−0)+f(0)=xwehaveln(1+x)<x⇒an+1=ln(1+an)<anandecreaseandan>0⇒ancvusetheoremcvDouble subscripts: use braces to clarifyDouble subscripts: use braces to clarifyln(1+x)=xusefisconcave⇒x=0liman=0an+1=ln(1+an)=an−an22+o(an3)...Dlf(x)near0an+1−1−an−1=(an−an22+o(an3))−1−an−1=an−1(1−an2+o(an2))−1−an−1=an−1(1+an2+o(an2))−an−1=12+o(an)⇒an+1−1−an−1∼12⇒∑Nk=nak+1−1−ak−1∼Σ12⇒aN+1−1−an−1∼N−n2∼N2⇒aN+1−1∼N2∼N+12⇒limn→∞an−1n=12Double subscripts: use braces to clarifyDouble subscripts: use braces to clarify
for(b)1ln(1+x)−1x=1x−x22+x33+o(x3)−1x=1x(11−(x2−x23+o(x2))−1)=1x(1+x2−x212+o(x2)−1)=12−x12+o(x)letVn=1un−n2Vn+1−Vn∼1ln(1+un)−1un−12∼−un12+o(un)un∼2nVn+1−Vn∼−16n+o(2n)⇒ΣVn+1−Vn∼−16Σ1n∼−16ln(n)Vn∼−16ln(n)1un−n2∼−ln(n)6⇒un∼1n2−ln(n)6=2n−ln(n)3nun−2∼2ln(n)3(n−ln(n)3)n(nun−2)ln(n)∼2nln(n)3(n−ln(n)3)ln(n)=23.11−ln(n)3→23
Terms of Service
Privacy Policy
Contact: info@tinkutara.com