Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 204270 by universe last updated on 10/Feb/24

Answered by witcher3 last updated on 10/Feb/24

(1)  withe recursion We can easly proov that a_n >0  a_(n+1) =f(a_n );f(x)=ln(1+x) increase function  a_n >0⇒a_(n+1) >f(0)=0  f(x)=ln(1+x);f′′(x)=−(1/((1+x)^2 ))<0 conncave function  tangent in zero y=f′(0)(x−0)+f(0)=x  we have ln(1+x)<x ⇒a_(n+1) =ln(1+a_n )<a_n   a_n  decrease and a_n >0⇒a_n  cv use theorem cv  s=lim_(n→∞) a_n  is a fixed point of f(x)=ln(1+x)  ln(1+x)=x use f is concave ⇒x=0  lim a_n =0  a_(n+1) =ln(1+a_n )=a_n −(a_n ^2 /2)+o(a_n ^3 )...Dl f(x) near 0  a_(n+1) ^(−1) −a_n ^(−1) =(a_n −(a_n ^2 /2)+o(a_n ^3 ))^(−1) −a_n ^(−1)   =a_n ^(−1) (1−(a_n /2)+o(a_n ^2 ))^(−1) −a_n ^(−1)   =a_n ^(−1) (1+(a_n /2)+o(a_n ^2 ))−a_n ^(−1) =(1/2)+o(a_n )  ⇒a_(n+1) ^(−1) −a_n ^(−1) ∼(1/2)  ⇒Σ_(k=n) ^N a_(k+1) ^(−1) −a_k ^(−1) ∼Σ(1/2)  ⇒a_(N+1) ^(−1) −a_n ^(−1) ∼((N−n)/2)∼(N/2)  ⇒a_(N+1) ^(−1) ∼(N/2)∼((N+1)/2)  ⇒lim_(n→∞) (a_n ^(−1) /n)=(1/2)  ⇔lim_(n→∞) na_n =2

(1)witherecursionWecaneaslyproovthatan>0an+1=f(an);f(x)=ln(1+x)increasefunctionan>0an+1>f(0)=0f(x)=ln(1+x);f(x)=1(1+x)2<0conncavefunctiontangentinzeroy=f(0)(x0)+f(0)=xwehaveln(1+x)<xan+1=ln(1+an)<anandecreaseandan>0ancvusetheoremcvDouble subscripts: use braces to clarifyln(1+x)=xusefisconcavex=0liman=0an+1=ln(1+an)=anan22+o(an3)...Dlf(x)near0an+11an1=(anan22+o(an3))1an1=an1(1an2+o(an2))1an1=an1(1+an2+o(an2))an1=12+o(an)an+11an112Nk=nak+11ak1Σ12aN+11an1Nn2N2aN+11N2N+12limnan1n=12Double subscripts: use braces to clarify

Answered by witcher3 last updated on 10/Feb/24

for(b)  (1/(ln(1+x)))−(1/x)=(1/(x−(x^2 /2)+(x^3 /3)+o(x^3 )))−(1/x)=(1/x)((1/(1−((x/2)−(x^2 /3)+o(x^2 ))))−1)  =(1/x)(1+(x/2)−(x^2 /(12))+o(x^2 )−1)  =(1/2)−(x/(12))+o(x)  let V_n =(1/u_n )−(n/2)  V_(n+1) −V_n ∼(1/(ln(1+u_n )))−(1/u_n )−(1/2)∼−(u_n /(12))+o(u_n )  u_n ∼(2/n)  V_(n+1) −V_n ∼−(1/(6n))+o((2/n))  ⇒ΣV_(n+1) −V_n ∼−(1/6)Σ(1/n)∼−(1/6)ln(n)  V_n ∼−(1/6)ln(n)  (1/u_n )−(n/2)∼−((ln(n))/6)⇒u_n ∼(1/((n/2)−((ln(n))/6)))=(2/(n−((ln(n))/3)))  nu_n −2∼((2ln(n))/(3(n−((ln(n))/3))))  ((n(nu_n −2))/(ln(n)))∼((2nln(n))/(3(n−((ln(n))/3))ln(n)))=(2/3).(1/(1−((ln(n))/3)))→(2/3)

for(b)1ln(1+x)1x=1xx22+x33+o(x3)1x=1x(11(x2x23+o(x2))1)=1x(1+x2x212+o(x2)1)=12x12+o(x)letVn=1unn2Vn+1Vn1ln(1+un)1un12un12+o(un)un2nVn+1Vn16n+o(2n)ΣVn+1Vn16Σ1n16ln(n)Vn16ln(n)1unn2ln(n)6un1n2ln(n)6=2nln(n)3nun22ln(n)3(nln(n)3)n(nun2)ln(n)2nln(n)3(nln(n)3)ln(n)=23.11ln(n)323

Terms of Service

Privacy Policy

Contact: info@tinkutara.com