All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 204329 by mr W last updated on 13/Feb/24
solve1[x]+1[2x]={x}+13
Answered by deleteduser1 last updated on 13/Feb/24
xcannotbenegative,otherwise,L.H.SandR.H.Swillhaveoppositesigns.xcannotalsogrowarbitrarilylarge,otherwise1[x]+1[2x]≪13Letx⩾5⇒[x]⩾5⇒[2x]⩾10⇒1[x]+1[2x]⩽310<13Also[x]≠0.Soconsiderx∈[1,5)when[x]=4,thenCaseI({x}<0.5):14+18={x}+13⇒{x}=124⇒x=4124CaseII({x}>0.5):14+19−13={x}=136<0.5→←when[x]=3,CaseI:13+16={x}+13⇒{x}=16⇒x=316..Similarly,weget{x}<0.5forCaseIIwhen[x]=2,CaseI:12+14−13={x}=512⇒x=2512[x]=1⇒{x}⩾1→←⇒x=4124,316,2512
Commented by mr W last updated on 13/Feb/24
greatsolution!
Answered by mr W last updated on 13/Feb/24
13⩽{x}+13<1+13=43say[x]=n,f={x},thenx=n+f2n⩽[2x]=2n+[2f]<2n+21[x]+1[2x]⩽1n+12n=32n32n⩾13⇒n⩽92⇒n⩽41[x]+1[2x]>1n+12(n+1)=3n+22n(n+1)3n+22n(n+1)<43⇒8n2−n−6>0⇒n>1+12+4×8×62×8≈0.93⇒n⩾1⇒orn<1−12+4×8×62×8≈−0.806⇒n⩽−1⇒1⩽n⩽41n+12n+[2f]=f+13case0⩽f<12:f=1n+12n−13n=1:f=76>1rejectedn=2:f=512⇒x=2512✓n=3:f=16⇒x=316✓4=4:f=124⇒x=4124✓case12⩽f<1:f=1n+12n+1−13n=1:f=1+13−13=1rejectedn=2:f=12+15−13=1130<12rejectedn=3:f=13+17−13=17<12rejectedn=4:f=14+19−13=136<12rejectedsummary:x=2512,316,4124
Terms of Service
Privacy Policy
Contact: info@tinkutara.com