Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 204329 by mr W last updated on 13/Feb/24

solve (1/([x]))+(1/([2x]))={x}+(1/3)

solve1[x]+1[2x]={x}+13

Answered by deleteduser1 last updated on 13/Feb/24

x cannot be negative,otherwise,L.H.S and R.H.S  will have opposite signs. x cannot also grow  arbitrarily large,otherwise (1/([x]))+(1/([2x]))≪(1/3)  Let x≥5⇒[x]≥5⇒[2x]≥10⇒(1/([x]))+(1/([2x]))≤(3/(10))<(1/3)  Also [x]≠0. So consider x∈[1,5)   when [x]=4,then  Case I({x}<0.5): (1/4)+(1/8)={x}+(1/3)  ⇒{x}=(1/(24))⇒x=4(1/(24))  Case II({x}>0.5): (1/4)+(1/9)−(1/3)={x}=(1/(36))<0.5→←  when [x]=3,Case I: (1/3)+(1/6)={x}+(1/3)⇒{x}=(1/6)  ⇒x=3(1/6).. Similarly,we get {x}<0.5 for Case II  when [x]=2, Case I:(1/2)+(1/4)−(1/3)={x}=(5/(12))⇒x=2(5/(12))  [x]=1⇒{x}≥1→←  ⇒x=4(1/(24)),3(1/6),2(5/(12))

xcannotbenegative,otherwise,L.H.SandR.H.Swillhaveoppositesigns.xcannotalsogrowarbitrarilylarge,otherwise1[x]+1[2x]13Letx5[x]5[2x]101[x]+1[2x]310<13Also[x]0.Soconsiderx[1,5)when[x]=4,thenCaseI({x}<0.5):14+18={x}+13{x}=124x=4124CaseII({x}>0.5):14+1913={x}=136<0.5→←when[x]=3,CaseI:13+16={x}+13{x}=16x=316..Similarly,weget{x}<0.5forCaseIIwhen[x]=2,CaseI:12+1413={x}=512x=2512[x]=1{x}1→←x=4124,316,2512

Commented by mr W last updated on 13/Feb/24

great solution!

greatsolution!

Answered by mr W last updated on 13/Feb/24

(1/3)≤{x}+(1/3)<1+(1/3)=(4/3)  say [x]=n, f={x}, then x=n+f  2n≤[2x]=2n+[2f]<2n+2  (1/([x]))+(1/([2x]))≤(1/n)+(1/(2n))=(3/(2n))  (3/(2n))≥(1/3) ⇒n≤(9/2) ⇒n≤4  (1/([x]))+(1/([2x]))>(1/n)+(1/(2(n+1)))=((3n+2)/(2n(n+1)))  ((3n+2)/(2n(n+1)))<(4/3) ⇒8n^2 −n−6>0   ⇒n>((1+(√(1^2 +4×8×6)))/(2×8))≈0.93 ⇒n≥1  ⇒ or n<((1−(√(1^2 +4×8×6)))/(2×8))≈−0.806 ⇒n≤−1  ⇒1≤n≤4  (1/n)+(1/(2n+[2f]))=f+(1/3)  case 0≤f<(1/2):  f=(1/n)+(1/(2n))−(1/3)  n=1: f=(7/6)>1 rejected  n=2: f=(5/(12)) ⇒x=2(5/(12)) ✓  n=3: f=(1/6) ⇒x=3(1/6) ✓  4=4: f=(1/(24)) ⇒x=4(1/(24)) ✓  case (1/2)≤f<1:  f=(1/n)+(1/(2n+1))−(1/3)  n=1: f=1+(1/3)−(1/3)=1 rejected  n=2: f=(1/2)+(1/5)−(1/3)=((11)/(30))<(1/2) rejected  n=3: f=(1/3)+(1/7)−(1/3)=(1/7)<(1/2) rejected  n=4: f=(1/4)+(1/9)−(1/3)=(1/(36))<(1/2) rejected    summary: x=2(5/(12)), 3(1/6), 4(1/(24))

13{x}+13<1+13=43say[x]=n,f={x},thenx=n+f2n[2x]=2n+[2f]<2n+21[x]+1[2x]1n+12n=32n32n13n92n41[x]+1[2x]>1n+12(n+1)=3n+22n(n+1)3n+22n(n+1)<438n2n6>0n>1+12+4×8×62×80.93n1orn<112+4×8×62×80.806n11n41n+12n+[2f]=f+13case0f<12:f=1n+12n13n=1:f=76>1rejectedn=2:f=512x=2512n=3:f=16x=3164=4:f=124x=4124case12f<1:f=1n+12n+113n=1:f=1+1313=1rejectedn=2:f=12+1513=1130<12rejectedn=3:f=13+1713=17<12rejectedn=4:f=14+1913=136<12rejectedsummary:x=2512,316,4124

Terms of Service

Privacy Policy

Contact: info@tinkutara.com