Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 20434 by pp75718276@gmail.com last updated on 26/Aug/17

If  cos x=tan y, cos y=tan z, cos z=tan x,  then the value of  sin x  is

Ifcosx=tany,cosy=tanz,cosz=tanx,thenthevalueofsinxis

Answered by ajfour last updated on 27/Aug/17

1+tan^2 z=(1/(cos^2 z))  ⇒  1+cos^2 y =(1/(tan^2 x))  ⇒ 1+(1/(1+tan^2 y))=(1/(tan^2 x))  ⇒  1+(1/(1+cos^2 x))=((1−sin^2 x)/(sin^2 x))  let sin^2 x=t  then        1+(1/(2−t))=((1−t)/t)       ⇒   ((3−t)/(2−t)) = ((1−t)/t)  ⇒  3t−t^2 =2+t^2 −3t    2t^2 −6t+2=0     2(t−(3/2))^2 =(5/2)  t=(3/2)−((√5)/2)  sin x = ±(√(((3−(√5))/2) )) .

1+tan2z=1cos2z1+cos2y=1tan2x1+11+tan2y=1tan2x1+11+cos2x=1sin2xsin2xletsin2x=tthen1+12t=1tt3t2t=1tt3tt2=2+t23t2t26t+2=02(t32)2=52t=3252sinx=±352.

Commented by myintkhaing last updated on 27/Aug/17

Check (1/(tan^2 x))

Check1tan2x

Answered by Tinkutara last updated on 27/Aug/17

cos^2  x = tan^2  y = sec^2  y − 1 = cot^2  z − 1  1+cos^2  x=cot^2  z=((cos^2  z)/(1−cos^2  z))=((tan^2  x)/(1−tan^2  x))  2−sin^2  x=((sin^2  x)/(cos^2  x−sin^2  x))=((sin^2  x)/(1−2sin^2  x))  (2−sin^2  x)(1−2sin^2  x)=sin^2  x  sin^4  x−3sin^2  x+1=0  sin^2  x=((3±(√5))/2)  But sin^2  x≤1 as sin x∈[−1,1]  So sin^2  x∈[0,1]  sin^2  x=(1/2)(3−(√5))=(1/2)[(1/2)(1+5−2(√5))]  sin^2  x=((((√5)−1)/2))^2 ⇒∣sin x∣=(((√5)−1)/2)  Similarly, ∣sin y∣=∣sin z∣=(((√5)−1)/2)

cos2x=tan2y=sec2y1=cot2z11+cos2x=cot2z=cos2z1cos2z=tan2x1tan2x2sin2x=sin2xcos2xsin2x=sin2x12sin2x(2sin2x)(12sin2x)=sin2xsin4x3sin2x+1=0sin2x=3±52Butsin2x1assinx[1,1]Sosin2x[0,1]sin2x=12(35)=12[12(1+525)]sin2x=(512)2⇒∣sinx∣=512Similarly,siny∣=∣sinz∣=512

Terms of Service

Privacy Policy

Contact: info@tinkutara.com