All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 20434 by pp75718276@gmail.com last updated on 26/Aug/17
Ifcosx=tany,cosy=tanz,cosz=tanx,thenthevalueofsinxis
Answered by ajfour last updated on 27/Aug/17
1+tan2z=1cos2z⇒1+cos2y=1tan2x⇒1+11+tan2y=1tan2x⇒1+11+cos2x=1−sin2xsin2xletsin2x=tthen1+12−t=1−tt⇒3−t2−t=1−tt⇒3t−t2=2+t2−3t2t2−6t+2=02(t−32)2=52t=32−52sinx=±3−52.
Commented by myintkhaing last updated on 27/Aug/17
Check1tan2x
Answered by Tinkutara last updated on 27/Aug/17
cos2x=tan2y=sec2y−1=cot2z−11+cos2x=cot2z=cos2z1−cos2z=tan2x1−tan2x2−sin2x=sin2xcos2x−sin2x=sin2x1−2sin2x(2−sin2x)(1−2sin2x)=sin2xsin4x−3sin2x+1=0sin2x=3±52Butsin2x⩽1assinx∈[−1,1]Sosin2x∈[0,1]sin2x=12(3−5)=12[12(1+5−25)]sin2x=(5−12)2⇒∣sinx∣=5−12Similarly,∣siny∣=∣sinz∣=5−12
Terms of Service
Privacy Policy
Contact: info@tinkutara.com