All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 204372 by mnjuly1970 last updated on 14/Feb/24
If,f:[0,b]→continuousR,g:R→continuousb−periodicR⇒limn→∞∫0bf(x)g(nx)dx=?1b∫0bf(x)dx.∫0bg(x)dx
Answered by witcher3 last updated on 15/Feb/24
Ω=limn→∞∫0bf(x)g(nx)dx=1b∫0bf(x)dx.∫0bg(x)dxnx=y⇒Ω=limn→∞1n∫0nbf(yn)g(y)dy=limn→∞1n∑n−1k=1∫kb(k+1)bf(yn)g(y)dyy=kb+z;g(y)=g(z)bybperiodicityofg=limn→∞1n∑n−1k=1∫0bf(kbn+zn)g(z)dz=∫0blimn→∞1n∑n−1k=1f(kbn+zn)g(z)dzletf∼(x)=f(x+zn)f∼(x)cvuniformlytoflimfn→∞(x+zn)=f(x)Ω=∫0blimn→∞1n∑n−1k=0f∼(k(b−0)n).g(z)dz=1b∫0blimn→∞b−0n∫f(kbn)g(z)dz=1b.limn→∞{bnf(kbn)}.∫0bg(z)dz∑n−1k=0b−0nf(kbn)=∫0bf(x)dxΩ=1b∫0bf(x)dx.∫0bg(z)dz,zmuetvariable=1b∫0bf(x)dx.∫0bg(x)dxriemanncvbycontonuityofflimn→∞∫0bf∼(x)dx=∫0bf(x)dxbyuniformecvoff∼(x)limn→∞sup∣f(x+zn)−f(x)∣=0‘‘sincefisdefined[0,b]compact⇒simplecv⇒uniformecv″
Commented by mnjuly1970 last updated on 15/Feb/24
thankyousomuchsirwicher.excellentproof.
niceproblemedidntexpctesuchresultexiste
Terms of Service
Privacy Policy
Contact: info@tinkutara.com