Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 204372 by mnjuly1970 last updated on 14/Feb/24

    If ,    f : [ 0 , b] →^(continuous)  R           ,    g : R →_(b−periodic) ^(continuous)  R        ⇒  lim_(n→∞)  ∫_0 ^( b) f(x)g(nx)dx=^? (1/b) ∫_0 ^( b) f(x)dx .∫_0 ^( b) g(x)dx

If,f:[0,b]continuousR,g:RcontinuousbperiodicRlimn0bf(x)g(nx)dx=?1b0bf(x)dx.0bg(x)dx

Answered by witcher3 last updated on 15/Feb/24

Ω=lim_(n→∞) ∫_0 ^b f(x)g(nx)dx=(1/b)∫_0 ^b f(x)dx.∫_0 ^b g(x)dx  nx=y⇒Ω=lim_(n→∞) (1/n)∫_0 ^(nb) f((y/n))g(y)dy=lim_(n→∞) (1/n)Σ_(k=1) ^(n−1) ∫_(kb) ^((k+1)b) f((y/n))g(y)dy  y=kb+z;g(y)=g(z)  by b periodicity of g  =lim_(n→∞) (1/n)Σ_(k=1) ^(n−1) ∫_0 ^b f(((kb)/n)+(z/n))g(z)dz  =∫_0 ^b lim_(n→∞) (1/n)Σ_(k=1) ^(n−1) f(((kb)/n)+(z/n))g(z)dz  let f^∼ (x)=f(x+(z/n))  f^∼ (x) cv uniformly to f  lim_(n→∞) f(x+(z/n))=f(x)  Ω=∫_0 ^b lim_(n→∞) (1/n)Σ_(k=0) ^(n−1) f^∼ (((k(b−0))/n)).g(z)dz=(1/b)∫_0 ^b lim_(n→∞) ((b−0)/n)∫f(((kb)/n))g(z)dz  =(1/b).lim_(n→∞) {(b/n)f(((kb)/n))}.∫_0 ^b g(z)dz  Σ_(k=0) ^(n−1) ((b−0)/n)f(k(b/n))=∫_0 ^b f(x)dx  Ω=(1/b)∫_0 ^b f(x)dx.∫_0 ^b g(z)dz,z muet variable  =(1/b)∫_0 ^b f(x)dx.∫_0 ^b g(x)dx  riemann cv by contonuity of f  lim_(n→∞) ∫_0 ^b f^∼ (x)dx=∫_0 ^b f(x)dx  by uniforme cv of f^∼ (x)  lim_(n→∞)  sup∣f(x+(z/n))−f(x)∣=0  “since f is defined [0,b] compact⇒simple cv⇒uniforme cv”

Ω=limn0bf(x)g(nx)dx=1b0bf(x)dx.0bg(x)dxnx=yΩ=limn1n0nbf(yn)g(y)dy=limn1nn1k=1kb(k+1)bf(yn)g(y)dyy=kb+z;g(y)=g(z)bybperiodicityofg=limn1nn1k=10bf(kbn+zn)g(z)dz=0blimn1nn1k=1f(kbn+zn)g(z)dzletf(x)=f(x+zn)f(x)cvuniformlytoflimfn(x+zn)=f(x)Ω=0blimn1nn1k=0f(k(b0)n).g(z)dz=1b0blimnb0nf(kbn)g(z)dz=1b.limn{bnf(kbn)}.0bg(z)dzn1k=0b0nf(kbn)=0bf(x)dxΩ=1b0bf(x)dx.0bg(z)dz,zmuetvariable=1b0bf(x)dx.0bg(x)dxriemanncvbycontonuityofflimn0bf(x)dx=0bf(x)dxbyuniformecvoff(x)limnsupf(x+zn)f(x)∣=0sincefisdefined[0,b]compactsimplecvuniformecv

Commented by mnjuly1970 last updated on 15/Feb/24

thank you so much   sir wicher .excellent proof.

thankyousomuchsirwicher.excellentproof.

Answered by witcher3 last updated on 15/Feb/24

nice probleme didnt expcte such result existe

niceproblemedidntexpctesuchresultexiste

Terms of Service

Privacy Policy

Contact: info@tinkutara.com