Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 204417 by Frix last updated on 16/Feb/24

Solve for z∈C                                e^z =ln z

SolveforzCez=lnz

Answered by mr W last updated on 17/Feb/24

say z=re^(θi) =r(cos θ+i sin θ)  with r, θ ∈R and r≥0.  e^(r(cos θ+i sin θ)) =ln r+θi  e^(rcos θ) e^((r sin θ)i) =ln r+θi  e^(rcos θ) [cos (r sin θ)+i sin (r sin θ)]=ln r+θi   { ((e^(r cos θ) cos (r sin θ)=ln r)),((e^(r cos θ) sin (r sin θ)=θ)) :}  one of infinite solutions is:  θ≈±1.33724, r≈1.37456

sayz=reθi=r(cosθ+isinθ)withr,θRandr0.er(cosθ+isinθ)=lnr+θiercosθe(rsinθ)i=lnr+θiercosθ[cos(rsinθ)+isin(rsinθ)]=lnr+θi{ercosθcos(rsinθ)=lnrercosθsin(rsinθ)=θoneofinfinitesolutionsis:θ±1.33724,r1.37456

Commented by Frix last updated on 17/Feb/24

I think there are only 2 solutions.  The problems are very similar:  x^n =c versus (x)^(1/n) =c  e^x =a+bi versus ln x =a+bi

Ithinkthereareonly2solutions.Theproblemsareverysimilar:xn=cversusxn=cex=a+biversuslnx=a+bi

Commented by mr W last updated on 17/Feb/24

Commented by Frix last updated on 18/Feb/24

Wolframalpha gives the following solutions:  z=ln z ⇒ z=e^(−W(−1)) ∨z=e^(−W_(−1) (−1))        (z≈.318132±1.33724i)  2 solutions    z=e^z  ⇒ z=−W_n (−1); n∈Z  infinitely many solutions    e^z =ln z ⇒ z≈.318132±1.33724i  2 solutions

Wolframalphagivesthefollowingsolutions:z=lnzz=eW(1)z=eW1(1)(z.318132±1.33724i)2solutionsz=ezz=Wn(1);nZinfinitelymanysolutionsez=lnzz.318132±1.33724i2solutions

Commented by mr W last updated on 17/Feb/24

each of the intersection points from  the green curves and the red curves  represents a solution.  e.g.  z=2.4206e^(±6.9223i)

eachoftheintersectionpointsfromthegreencurvesandtheredcurvesrepresentsasolution.e.g.z=2.4206e±6.9223i

Answered by Frix last updated on 17/Feb/24

e^a =b ⇔ a=ln b  Let a=b=z  e^z =z ⇔ z=ln z ⇔ e^z =ln z  ⇒ We can solve  e^z =z and test our solutions    e^z =z  z=a+bi  e^a (cos b +i sin b)=a+bi  sin b =be^(−a)   cos b =ae^(−a)   ⇒ tan b =(b/a) ⇔ a=(b/(tan b))  sin b =be^(−(b/(tan b)))  ⇔ b−e^(b/(tan b)) sin b =0    b_1 ≈±1.33723570143 ⇒ a_1 ≈.318131505205  z_1 ≈.318131505205±1.33723570143i  z_1 ≈1.37455701074e^(±1.33723570143i)   Test  e^z_1  =z_1  true  ln z_1 =z_1  true    b_2 ≈±7.58863117847 ⇒ a_2 ≈2.06227772960  z_2 ≈2.06227772960±7.58863117847i  z_2 ≈7.86386117609e^(±1.30544587129i)   Test  e^z_2  =z_2  true  ln z_2  ≈2.06227772960±1.30544587129i ≠ z_2  false

ea=ba=lnbLeta=b=zez=zz=lnzez=lnzWecansolveez=zandtestoursolutionsez=zz=a+biea(cosb+isinb)=a+bisinb=beacosb=aeatanb=baa=btanbsinb=bebtanbbebtanbsinb=0b1±1.33723570143a1.318131505205z1.318131505205±1.33723570143iz11.37455701074e±1.33723570143iTestez1=z1truelnz1=z1trueb2±7.58863117847a22.06227772960z22.06227772960±7.58863117847iz27.86386117609e±1.30544587129iTestez2=z2truelnz22.06227772960±1.30544587129iz2false

Terms of Service

Privacy Policy

Contact: info@tinkutara.com