Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 204421 by necx122 last updated on 17/Feb/24

x^3 +y^3  = 35  (1/x)+(1/y) =(5/6)  solve for all possible values of x and y

x3+y3=351x+1y=56solveforallpossiblevaluesofxandy

Answered by Rasheed.Sindhi last updated on 17/Feb/24

x^3 +y^3  = 35  ⇒(1/x^3 )+(1/y^3 )=((35)/(x^3 y^3 ))  ⇒((1/x)+(1/y))^3 −3((1/x))((1/y))((1/x)+(1/y))=((35)/(x^3 y^3 ))     ((5/6))^3 −(3/(xy))((5/6))=((35)/(x^3 y^3 ))     ((125)/(216))−(5/(2xy))=((35)/(x^3 y^3 ))     ((125xy−540)/(216xy))=((35)/(x^3 y^3 ))     ((125xy−540)/(216))=((35)/(x^2 y^2 ))     125x^3 y^3 −540x^2 y^2 =35×216     25(xy)^3 −108(xy)^2 −1512=0     (xy−6)( 25(xy)^2 +42x+252 )=0       xy=6 ,((−42±(√(42^2 −4(25)(252))))/(50))       xy=6 ,((−21±3i(√(651)))/(25))  (1/x)+(1/y) =(5/6)  ((x+y)/(xy))=(5/6)  ((x+y)/6)=(5/6)  x+y=5  xy=6 ∧ x+y=5⇒(x,y)=(2,3),(3,2)

x3+y3=351x3+1y3=35x3y3(1x+1y)33(1x)(1y)(1x+1y)=35x3y3(56)33xy(56)=35x3y312521652xy=35x3y3125xy540216xy=35x3y3125xy540216=35x2y2125x3y3540x2y2=35×21625(xy)3108(xy)21512=0(xy6)(25(xy)2+42x+252)=0xy=6,42±4224(25)(252)50xy=6,21±3i651251x+1y=56x+yxy=56x+y6=56x+y=5xy=6x+y=5(x,y)=(2,3),(3,2)

Commented by necx122 last updated on 17/Feb/24

Wow! This is lovely and detailed. Thank you  for always clearing my doubt.

Wow!Thisislovelyanddetailed.Thankyouforalwaysclearingmydoubt.

Answered by Rasheed.Sindhi last updated on 17/Feb/24

(1/x)+(1/y) =(5/6)⇒((x+y)/(xy))=(5/6)⇒xy=((6(x+y))/5)  x^3 +y^3  = 35⇒(x+y)^3 −3xy(x+y)=35  ⇒(x+y)^3 −3(((6(x+y))/5))(x+y)=35  5(x+y)^3 −18(x+y)^2 −175=0  5t^3 −18t^2 −175=0; [t=x+y]  (t−5)(5t^2 +7t+35)=0  t=5,((−7±i(√(651)))/(10))  x+y=5,((−7±i(√(651)))/(10))  xy=((6(x+y))/5)=((6(5))/5),((6(((−7±i(√(651)))/(10))))/5)  xy=6,((3(−7±i(√(651)) ))/(25))  x+y=5 ∧ xy=6 ⇒(x,y)=(2,5),(5,2)     x+y=((−7±i(√(651)))/(10)) ∧ xy=((3(−7±i(√(651)) ))/(25))  y=((−7±i(√(651)))/(10))−x     ∧ x(((−7±i(√(651)))/(10))−x)=((3(−7±i(√(651)) ))/(25))     ((−7±i(√(651)))/(10))x−x^2 =((3(−7±i(√(651)) ))/(25))     x^2 −((−7±i(√(651)))/(10))x+((3(−7±i(√(651)) ))/(25))=0  Continue

1x+1y=56x+yxy=56xy=6(x+y)5x3+y3=35(x+y)33xy(x+y)=35(x+y)33(6(x+y)5)(x+y)=355(x+y)318(x+y)2175=05t318t2175=0;[t=x+y](t5)(5t2+7t+35)=0t=5,7±i65110x+y=5,7±i65110xy=6(x+y)5=6(5)5,6(7±i65110)5xy=6,3(7±i651)25x+y=5xy=6(x,y)=(2,5),(5,2)x+y=7±i65110xy=3(7±i651)25y=7±i65110xx(7±i65110x)=3(7±i651)257±i65110xx2=3(7±i651)25x27±i65110x+3(7±i651)25=0Continue

Answered by Frix last updated on 17/Feb/24

x^3 +y^3 =35  (1/x)+(1/y)=(5/6) ⇔ 5xy=6(x+y)  x=u−v∧y=u+v  2u^3 +6uv^2 =35  5u^2 −5v^2 =12u  ⇒  ((35−2u^3 )/(6u))=((5u^2 −12u)/5)  u^3 −((9u^2 )/5)−((35)/8)=0  u=(5/2) ⇒ v=(1/2)  u=−(7/(20))±((√(651))/(20))i ⇒ v=((√(−133+10(√(6433))))/(20))∓((√(133+10(√(6433))))/(20))i  ⇒ x, y

x3+y3=351x+1y=565xy=6(x+y)x=uvy=u+v2u3+6uv2=355u25v2=12u352u36u=5u212u5u39u25358=0u=52v=12u=720±65120iv=133+10643320133+10643320ix,y

Terms of Service

Privacy Policy

Contact: info@tinkutara.com