Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 204510 by Ghisom last updated on 20/Feb/24

solve for x≠y∧y≠z∧z≠x  (exact solutions required)  (√((−3+4i)x))=y  (√((−3+4i)y))=z  (√((−3+4i)z))=x

solveforxyyzzx(exactsolutionsrequired)(3+4i)x=y(3+4i)y=z(3+4i)z=x

Answered by Frix last updated on 20/Feb/24

Obviously x=y=z=0 but this is excluded.  Btw x=y=z=(−3+4i) doesn′t work anyway  because (√((−3+4i)^2 ))=3−4i≠−3+4i    (√((−3+4i)z))=x ⇒ z=−(((3+4i)x^2 )/(25))  (√((−3+4i)y))=−(((3+4i)x^2 )/(25)) ⇒ y=(((117−44i)x^4 )/(15625))  (√((−3+4i)x))=(((117−44i)x^4 )/(15625))  x=−(((76443−16124i)x^8 )/(6103515625)); x≠0  x^7 =−76443+16124i  x^7 =5^7 e^(i(π−tan^(−1)  ((16124)/(76443))))   The rest is to find the fitting solution...  Sorted by the angle (circular solutions  x→y→z→x)  x=5e^(i(((π−tan^(−1)  ((16124)/(76443)))/7))) ≈4.56727+2.03470i  y=5e^(i(((3π−tan^(−1)  ((16124)/(76443)))/7))) ≈1.25686+4.83945i  z=5e^(−i(((3π+tan^(−1)  ((16124)/(76443)))/7))) ≈.967372−4.90553i

Obviouslyx=y=z=0butthisisexcluded.Btwx=y=z=(3+4i)doesntworkanywaybecause(3+4i)2=34i3+4i(3+4i)z=xz=(3+4i)x225(3+4i)y=(3+4i)x225y=(11744i)x415625(3+4i)x=(11744i)x415625x=(7644316124i)x86103515625;x0x7=76443+16124ix7=57ei(πtan11612476443)Therestistofindthefittingsolution...Sortedbytheangle(circularsolutionsxyzx)x=5ei(πtan116124764437)4.56727+2.03470iy=5ei(3πtan116124764437)1.25686+4.83945iz=5ei(3π+tan116124764437).9673724.90553i

Commented by Ghisom last updated on 20/Feb/24

thank you

Terms of Service

Privacy Policy

Contact: info@tinkutara.com