Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 20466 by tammi last updated on 27/Aug/17

∫((sin xcos xdx)/(sin^4 x+cos^4 x))

$$\int\frac{\mathrm{sin}\:{x}\mathrm{cos}\:{xdx}}{\mathrm{sin}^{\mathrm{4}} {x}+\mathrm{cos}\:^{\mathrm{4}} {x}} \\ $$

Answered by sma3l2996 last updated on 27/Aug/17

t=sin^2 x⇒dt=2sinxcosxdx  I=(1/2)∫(dt/(t^2 +(1−t)^2 ))=(1/2)∫(dt/(2t^2 −2t+1))  =(1/2)∫(dt/(2t^2 −2×(((√2)t)/(√2))+(1/2)−(1/2)+1))  =(1/2)∫(dt/(((√2)t−(1/(√2)))^2 +(1/2)))  =(1/2)∫(dt/((((2t−1)/(√2)))^2 +(1/2)))=(1/2)∫(dt/((1/2)((((2t−1)/(√2))×(√2))^2 +1)))  =∫(dt/((2t−1)^2 +1))  u=2t−1⇒du=2dt  I=(1/2)∫(du/(u^2 +1))=(1/2)tan^(−1) (u)+C=(1/2)tan^(−1) (2t−1)+C  =(1/2)tan^(−1) (2sin^2 x−1)+C=(1/2)tan^(−1) (−cos(2x))+C  I=−(1/2)tan^(−1) (cos(2x))+C

$${t}={sin}^{\mathrm{2}} {x}\Rightarrow{dt}=\mathrm{2}{sinxcosxdx} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{t}^{\mathrm{2}} +\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}×\frac{\sqrt{\mathrm{2}}{t}}{\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\left(\sqrt{\mathrm{2}}{t}−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\left(\frac{\mathrm{2}{t}−\mathrm{1}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\frac{\mathrm{1}}{\mathrm{2}}\left(\left(\frac{\mathrm{2}{t}−\mathrm{1}}{\sqrt{\mathrm{2}}}×\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$=\int\frac{{dt}}{\left(\mathrm{2}{t}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}} \\ $$$${u}=\mathrm{2}{t}−\mathrm{1}\Rightarrow{du}=\mathrm{2}{dt} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left({u}\right)+{C}=\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left(\mathrm{2}{t}−\mathrm{1}\right)+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left(\mathrm{2}{sin}^{\mathrm{2}} {x}−\mathrm{1}\right)+{C}=\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left(−{cos}\left(\mathrm{2}{x}\right)\right)+{C} \\ $$$${I}=−\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left({cos}\left(\mathrm{2}{x}\right)\right)+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com