Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 204841 by Simurdiera last updated on 28/Feb/24

Racionalizar el denominador  ((1 − x)/( (x)^(1/3)  − (√(√x))))

Racionalizareldenominador1xx3x

Commented by Frix last updated on 28/Feb/24

((1−x)/(x^(1/3) −x^(1/4) ))=−(((x^((11)/(12)) +x^(5/6) +x^(3/4) )/x)+Σ_(k=0) ^8 x^(k/(12)) )

1xx13x14=(x1112+x56+x34x+8k=0xk12)

Answered by A5T last updated on 28/Feb/24

(((x−1)((x)^(1/4) +(x)^(1/3) )=p)/( ((x)^(1/4) −(x)^(1/3) )((x)^(1/4) +(x)^(1/3) )))=((p((√x)+(x^2 )^(1/3) ))/( ((√x)−(x^2 )^(1/3) )((√x)+(x^2 )^(1/3) )))  =((p((√x)+(x^2 )^(1/3) ))/(x−(x^4 )^(1/3) =x(1−(x)^(1/3) )))=((p((√x)+(x^2 )^(1/3) )((x^2 )^(1/3) +(x)^(1/3) +1))/(x(1−(x)^(1/3) )((x^2 )^(1/3) +(x)^(1/3) +1)))  =(((x−1)((x)^(1/4) +(x)^(1/3) )((√x)+(x^2 )^(1/3) )((x^2 )^(1/3) +(x)^(1/3) +1))/(x(1−x)))  =((−((x)^(1/4) +(x)^(1/3) )((√x)+(x^2 )^(1/3) )((x^2 )^(1/3) +(x)^(1/3) +1))/x)

(x1)(x4+x3)=p(x4x3)(x4+x3)=p(x+x23)(xx23)(x+x23)=p(x+x23)xx43=x(1x3)=p(x+x23)(x23+x3+1)x(1x3)(x23+x3+1)=(x1)(x4+x3)(x+x23)(x23+x3+1)x(1x)=(x4+x3)(x+x23)(x23+x3+1)x

Terms of Service

Privacy Policy

Contact: info@tinkutara.com