Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 204873 by necx122 last updated on 29/Feb/24

The figure below represents a design  on the windows of a building. The  curved part XY is an arc of a circle.  The rise of the segmental arc is 10cm,  its span is 100cm and XZ=ZY=120cm.  calculate:  (i) the radius of the circle  (ii) the area of the segmental cap,  correct to 2 significant figures.  (iii) the total area of the design, correct  to 3 significant figures.

Thefigurebelowrepresentsadesignonthewindowsofabuilding.ThecurvedpartXYisanarcofacircle.Theriseofthesegmentalarcis10cm,itsspanis100cmandXZ=ZY=120cm.calculate:(i)theradiusofthecircle(ii)theareaofthesegmentalcap,correctto2significantfigures.(iii)thetotalareaofthedesign,correctto3significantfigures.

Commented by necx122 last updated on 29/Feb/24

Commented by necx122 last updated on 29/Feb/24

I will really need our help on this. Thanks in advance.

Answered by A5T last updated on 29/Feb/24

Construct the perpendicular bisector of XY,  then Z and O,centre of circle, lie on it.  R^2 =50^2 +(R−10)^2 ⇒R^2 =50^2 +R^2 −20R+100  ⇒20R=2600⇒R=130cm  100^2 =2×130^2 −2×130^2 cosXOY  ⇒cosXOY=((119)/(169))⇒sinXOY=((120)/(169))  ⇒Area of sector=((sin^(−1) (((120)/(169))))/(360))×130^2 π≈6671.9699  Area of XOY=65×130×((120)/(169))=6000  ⇒Area of segmental arc≈671.9699cm^2   ⇒Total area of design≈60×120×((5(√(119)))/(72))−671.9699  500(√(119))−671.9699≈4782.389  [100^2 =2×120^2 −2×120^2 cosXZY⇒cosXZY=((47)/(72))  ⇒sinXZY=((5(√(119)))/(72))]

ConstructtheperpendicularbisectorofXY,thenZandO,centreofcircle,lieonit.R2=502+(R10)2R2=502+R220R+10020R=2600R=130cm1002=2×13022×1302cosXOYcosXOY=119169sinXOY=120169Areaofsector=sin1(120169)360×1302π6671.9699AreaofXOY=65×130×120169=6000Areaofsegmentalarc671.9699cm2Totalareaofdesign60×120×511972671.9699500119671.96994782.389[1002=2×12022×1202cosXZYcosXZY=4772sinXZY=511972]

Commented by necx122 last updated on 29/Feb/24

This is clear, understandable and  precise. Thank you sir.

Thisisclear,understandableandprecise.Thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com